Nvidia boss says new DRIVE Thor computer will be epic for self-driving.

Nvidia’s 2k teraflop super chip for self-driving and assisted driving

On Tuesday 20 September, Nvidia unveiled a new computing platform, DRIVE Thor, designed to centralise self-driving and assisted driving, along with other digital functions such as in-car entertainment.

Succeeding the successful DRIVE Orin, Nvidia founder and CEO, Jensen Huang, describes Thor as “a superchip of epic proportions… an incredible leap in deep neural network accuracy”.

The system-on-a-chip (SoC) is built on the latest central processing unit (CPU) and graphics processing unit (GPU) advances, delivering 2,000 teraflops of performance.

Self-driving superchip

“DRIVE Thor unifies traditionally distributed functions in vehicles — including digital cluster, infotainment, parking and assisted driving — for greater efficiency in development and faster software iteration,” said Huang.

“Manufacturers can configure the DRIVE Thor superchip in multiple ways. They can dedicate all of the platform’s 2,000 teraflops to the autonomous driving pipeline, or use a portion for in-cabin AI and infotainment.”

Nvidia DRIVE Thor: distributed v centralised computer
Nvidia DRIVE Thor: distributed v centralised computer

Nvidia says the SoC is capable of multi-domain computing, enabling a car to run Linux, QNX and Android simultaneously on one computer. Realistically, it could be fitted into carmakers’ 2025 models.

Danny Shapiro, head of Nvidia’s automotive business, told Reuters: “You can imagine a tremendous savings in terms of cost, in terms of reduced cabling, in terms of reduced weight, in terms of reduced energy consumption overall.”

As we noted in our “Connected car data surge” feature last year, there are pressing questions around data privacy, but there’s no doubt this technology is phenomenal.

Computational horsepower

Check out the “computational horsepower” of DRIVE Thor compared to Orin, which was itself highly rated:

Nvidia Thor computational power
Nvidia Thor computational power

For more on DRIVE Thor see this Nvidia blog.

Project Encode demonstrates live switching between manual driving, self-driving and teleoperation in Oxford and London.

Another UK self-driving 1st: Project Encode demonstrates transfer of control between manual, autonomous and teleoperation

In another UK self-driving first, Project Encode recently demonstrated transfer of control across three states – manual driving, autonomous driving and teleoperation – in live vehicle tests in Oxford and London.

Backed by the DfT’s Centre for Connected and Autonomous Vehicles (CCAV) – like CAVForth – and Innovate UK, partners in the project included technology specialist StreetDrone, IoT security company Angoka, Coventry University and Oxfordshire County Council.

Manual to self-driving to remote operation

The aim was to illustrate how automation can be progressively introduced into industrial settings, with autonomous systems managing the more straightforward vehicle operations and remote drivers stepping in to handle more complex tasks as necessary.

Project Encode demonstration video 

The consortium says this proof of concept – delivering transferable responsibility for vehicle control in a cyber-secure context – is central to advancing the application of driverless and teleoperated vehicles across logistics networks.

Official comments

StreetDrone CEO, Mike Potts, said: “The success of this trial, conducted not in a controlled environment but out on the public highway, is blending autonomous technologies with teleoperation to prove an advanced level of technology readiness that can deliver much-needed efficiencies into the supply chain.

“Where tasks are too complex for autonomous technologies, teleoperations steps in. This integration provides a ‘ready-now’ solution and it has been a sight to behold.”

Project Encode – manual driving, self-driving and teleoperation
Project Encode – manual driving, self-driving and teleoperation

Dr Giedre Sabaliauskaite, Associate Professor at Coventry University’s Systems Security Group, part of the Centre for Future Transport and Cities (CFTC), added: “It is very important security assurance processes are addressed through the design and engineering cycle.

“This demonstration through the Encode project offers an opportunity to establish a rigorous assurance cycle, ultimately for wider public acceptance.”

Bill McKinley of Keysight Technologies explains how C-V2X and DSRC enable higher levels of self-driving

Keysight at forefront of self-driving safety standards and certification

Ahead of a flagship product launch later this week, Bill McKinley, Automotive Strategic Planner at Keysight Technologies, gives his thoughts on self-driving and the fast-changing connected and autonomous vehicle (CAV) landscape.

Avid readers may remember that Bill was on the panel I hosted at the Small Cells World Summit in May. He’s got 30+ years’ experience in wireless communications and his current focus is developing test solutions for the automotive sector.

BM: “The UK, in line with other nations around the world, is investing heavily in connectivity and electrification – both the vehicles themselves and the charging infrastructure. Connected vehicles have been demonstrated to enhance safety via cellular vehicle to everything (C-V2X) and dedicated short-range communication (DSRC).

“These technologies allow for more efficient driving, for example, by routing to avoid accidents or poor road conditions. They also enable higher levels of automation, all of which can lead to an improved overall driving experience.

“It is likely that the first fully automated vehicles will be delivery vehicles, controlled environment shuttle type services, and buses on specific routes. With the gradual introduction of robotaxis, we will no doubt start to see Mobility as a Service (MaaS) become more common over the next 10-15 years.

“From a Keysight perspective, we play a significant role at the very leading edge of connected and automated mobility. We participate in various global organisations developing the standards, test procedures and certification for the industry, including the 5G Automotive Association (5GAA), the Car 2 Car Communication Consortium (C2C CC), the China Academy of Information and Communications Technology (CAICT), the OmniAir Consortium and the Society of Automotive Engineers (SAE).

“Keysight was the first test and measurement company to be awarded Global Certification Forum (GCF) validation for C-V2X RF conformance. We have industry leading validated test cases for the C-V2X protocol conformance test, and we were the first to be awarded OmniAir Qualified Test Equipment (OQTE) status. 

“Cybersecurity will play a critical role in connected mobility and Keysight is working with leading companies and organisations in this space to develop solutions to ensure vehicular communications remain safe and robust against attacks. 

“Clearly, the main risks associated with self-driving vehicles are around the safety aspects, which in turn will heavily influence public acceptance of the technology. We are all very familiar with some of the headlines about Tesla vehicles.  

“It remains incredibly challenging to overcome the complexities of urban automated driving, but things are improving all the time. Our autonomous driving emulator (ADE) system is designed with this in mind – to test many autonomous drive systems in a rich and authentic environment within the lab, before moving testing out into the field.”

More on that to follow soon. For further info see keysight.com

Pressing data privacy questions as car computer processing power increases.

Connected car data surge: welcome to the world of petabytes and exaFLOPS

The sheer volume of data being collected by connected cars is soaring. Forget megabytes (MB), gigabytes (GB) and even terabytes (TB), it’s time to start thinking in petabytes (PB) and exaflops (EFLOPS).

A petabyte is equal to one quadrillion (one thousand trillion) bytes. However, rather than looking at storage capacity, there’s now been a shift towards performance, measured in floating-point operations per second (FLOPS).

At the CVPR 2021 Workshop on Autonomous Driving event earlier this year, Tesla unveiled its new in-house supercomputer, boasting an eyewatering 1.8 EFLOPS.

The University Information Technology Services tells us that: “To match what a one EFLOPS computer system can do in just one second, you’d have to perform one calculation every second for 31,688,765,000 years.”

Behind this unprecedented processing power sit important questions. Back in 2019 we asked Connected cars: whose data is it anyway? with Bill Hanvey, CEO of the Auto Care Association, warning that “carmakers have no incentive to release control of the data collected from our vehicles”.

Under the headline “Customer trust is essential to large-scale adoption of connected cars”, Engineering and Technology (E&T) recently highlighted a survey, by automotive engineering company Horiba MIRA, which asked 1,038 car owners from the UK, Germany and Italy about privacy in their connected vehicles. 42% said they were not made aware that they could withdraw their consent.

Garikayi Madzudzo, advanced cybersecurity research scientist at Horiba MIRA, commented: “Industry sources estimate that on average about 480 terabytes of data was collected by every automotive manufacturer in 2013, and it is expected that this will increase to 11.1 petabytes per year during the course of 2021.

“With such large volumes of personal information being collected, it is inevitable that privacy will be a challenge.”

This dovetails with a survey by Parkers which found that 86% of people wouldn’t be happy to share driving habit data with third-party companies.

Parkers.co.uk editor, Keith Adams, told Fleet News: “We’re agreeing to all manner of terms and conditions on a daily basis – I shudder to think what Google knows about me – but it comes as a surprise to see so few drivers are aware of what their cars knows about them.”

Meanwhile, The Star Online has published some interesting thoughts on data privacy from Volkswagen Group chief executive, Herbert Diess.

“In Europe, data belongs to our customers first and foremost – they decide what happens with it,” he said.

“In China, data is considered a common good, available for the people’s good. In America, data is predominantly seen as an economic good, is not public, but remains with the companies, with Google, with Apple, in order to serve the business model there.”

Vehicle-to-everything (V2X) 4G and 5G connectivity via small cells can be a lifesaver.

Carsofthefuture.co.uk editor to host Automotive & Transportation session at Small Cells World Summit 2021

Carsofthefuture.co.uk has signed a media partnership agreement with The Small Cell Forum (SCF) for its three-day online Small Cells World Summit, The Future of Mobile Networks, on 11-13 May 2021.

Small Cells World Summit 2021 registration
Small Cells World Summit 2021 registration

As part of the deal, Carsofthefuture.co.uk editor Neil Kennett will moderate the Automotive & Transportation session from 11am on Wednesday 12 May, with high-profile speakers including: Peter Stoker, Chief Engineer for Connected and Autonomous Vehicles at Millbrook Proving Ground; Dr Maxime Flament, Chief Technology Officer at the 5G Automotive Association, one of the world’s leading authorities on Intelligent Transport Systems (ITS); Bill McKinley, Connected Car Business Lead at Keysight Technologies; and Mark Cracknell, Head of Connected and Automated Mobility at Zenzic, responsible for accelerating the self-driving revolution in the UK.

Neil Kennett, said: “We are delighted to partner with The Small Cell Forum for this exciting virtual event, which brings together mobile operators, vendors and regulators from around the globe. The Automotive & Transportation session will focus on connected and autonomous vehicle (CAV) opportunities, particularly vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X) communications, in-vehicle payments, and the rival ITS-G5 and C-V2X 5G technologies.

“Small cells deliver high-quality, secure 4G and 5G coverage, so there are clearly a multitude of new use cases in the connected car world and the wider mobility ecosystem. Aside from supporting self-driving, they can facilitate everything from in-car infotainment and shopping, to fixing technical problems before they occur and pre-empting likely crash scenarios. It is no exaggeration to say they could be a lifesaver.”

Carsofthefuture.co.uk readers can benefit from a 40% discount on Small Cells World Summit 2021 tickets using the code SCWS2021. See www.smallcells.world/

Humanising Autonomy uses behavioural psychology and computer algorithms to make cities safer for pedestrians and cyclists.

Using cameras and AI to protect vulnerable road users

Our Zenzic CAM Creator series continues with Raunaq Bose, co-founder of Humanising Autonomy.

Before establishing predictive artificial intelligence (AI) company Humanising Autonomy in 2017, Raunaq Bose studied mechanical engineering at Imperial College London and innovation design engineering at the Royal College of Art. Focusing on the safety of vulnerable road users, Humanising Autonomy aims to redefine how machines and people interact, making cities safer for pedestrians, cyclists and drivers alike.

RB: “Our model is a novel mix of behavioural psychology, deep learning and computer algorithms. We work with OEMs and Tier 1 suppliers on the cameras on vehicles, with the aftermarket on retrofitted dashcams, and also with infrastructure. Our software works on any camera system to look for interactions between vulnerable road users, vehicles and infrastructure in order to prevent accidents and near misses. While most AI companies use black box systems where you can’t understand why decisions are made, we set out to make our models more interpretable, ethically compliant and safety friendly.

“When it comes to questions like ‘Is this pedestrian going to cross the road?’, we look at body language and factors like how close they are to the edge of the pavement. We then put a percentage on the intention. Take distraction, for example, we cannot see it but we can infer it. Are they on the phone? Are they looking at the oncoming vehicle? Is their view blocked? These are all behaviours you can see and our algorithm identifies them and puts a numerical value on them. So we can say, for example, we’re 60% sure that this pedestrian is going to cross. This less binary approach is important in building trust – you don’t want lots of false positives, for the system to be pinging all the time.

“One of the main things we’re likely to see over the next decade is increased use of micromobility, such as cycling and e-scootering. At the same time you will see more communication between these different types of transportation, and also with vehicles and infrastructure. The whole point of ADAS is to augment the driver’s vision, to reduce blind spots and, if necessary, take control of the vehicle to avoid a shunt. Then there’s the EU agreement that by 2022 all buses and trucks must have safety features to detect and warn of vulnerable road users.

“We currently only look at what’s outside the vehicle, but with self-driving there will be monitoring of the cabin. In terms of privacy, we have a lot of documentation about our GNPR processes and how we safeguard our data. Importantly, we never identify people, for example, we never watch for a particular individual between camera streams. We look to the future with autonomous cars but for now we’re focused on what’s on the road today.”

For further info visit humanisingautonomy.com.

UK government sparks global business sharing transport sector data.

Sharing data collected by connected cars

Our Zenzic CAM Creator series continues with Mika Rasinkangas, founder and President of Chordant.

Originally part of the global wireless and internet of things (IoT) research company, InterDigital, Chordant was spun out as a separate business in 2019, as “a dynamic data sharing expert”. The spark was a UK government initiative to test the hypothesis that regional transportation data has tremendous value, especially when shared between different parties. The results of this two-year public-private partnership were startling.

Please can you outline your work on connected and automated mobility?

MR: “First of all we looked at the mobility space. There’s the segment that maintains the road network and their supply chain, the mobility service providers – bus companies, train operators and new entrants such as Uber – then the whole automotive sector, OEMs and their supply chain partners. We sit right in the middle of all this and our role is data exchange – bringing dynamic data sets from different sources to come up with something different that solves problems with data driven solutions.

“The hypothesis was that a lot of data in the transport segment was either underutilised, in really small silos, or not utilised at all. The idea was to work with different entities – organisations, companies and universities – to bring data together and make it more widely available, leading to innovation and efficiency.

“It was obvious from early on that this was not only a technical issue, there was a human element. Data is controlled by different entities and departments so the challenge was to get these different data owners comfortable with the idea that their data could be used for other purposes, and to get consumers comfortable with it too. The result was more usable and more reliable dynamic data.”

What major shifts in UK transport do you expect over the next 10-15 years?

MR: “Last mile transport, micromobility solutions are ballooning and Covid19 will only accelerate this. People are walking, scootering and biking more, making short trips by means which don’t involve public transport or being in close contact to others.

“In terms of automotive, we’re living through a massive change in how people perceive the need to own a car, and this shift in perception is changing the fundamental business models. Autonomous vehicle technology keeps developing, connected vehicles are everywhere already and electric cars represent an ever bigger proportion of the vehicle population. In all these segments data utilisation will continue to increase. New cars collect huge amounts of data for lots of purposes and this can be used for lots of things other than what it was originally collected for.”

Can you address the data privacy concerns surrounding connected cars?

MR: “Data privacy is a multifaceted topic. On the one hand, Europe has been at the forefront of it with GDPR. That puts businesses operating in Europe on a level playing field. In terms of connected and autonomous vehicles (CAVs), these regulations set limitations on what data can be harvested and what has to be anonymised in order for someone to use it. It fits the norms of today’s society, but you can see in social media that this kind of privacy seems less important to younger people, however perspectives vary greatly and companies need to be transparent in usage of people’s data.

“From a business perspective, we have to take privacy extremely seriously. The explosion of data usage can have unintended consequences but by and large the regulatory environment works quite reasonably.

“We typically deal with conservative entities which put privacy and security in the middle of everything – if there’s any uncertainty it’s better to not do it, is the attitude. Think of all the sensitive personal data that entities like car companies and mobile telephone companies have. It can give an extremely accurate picture of peoples’ behaviour. There are well established procedures to anonymise data so customers can be comfortable that their personal data cannot be identified.”

What are the main risks in the shift to self-driving and how can these be mitigated?

MR: “One could talk about a lot of different challenges. What about the latency in connectivity in order to ensure processing takes place fast enough? There’s a gazillion of things, but to me these are technical nuts that will be cracked, if they haven’t been already. One of the biggest challenges is the interaction between human-controlled vehicles and automated vehicles. When you add in different levels of driver assistance, urban and rural, different weather conditions – all sorts of combinations can happen.

“The UK is at the forefront of CAV testing. There are government sponsored testbeds and companies are running trials on open roads, so the automotive industry can test in real-life environments. We cannot simulate everything, and the unpredictability of interactions is one of the biggest challenges. A traffic planner once told me that in his nightmares he sees a driverless car heading toward a granddad in a pick-up truck, because there’s just no telling how he might react!”

Is there anything else you’d like to mention?

MR: “I’d like to address the explosion of data usage in mobility and how dynamic data enables not only efficiency improvements but new business models. According to recent studies by companies like Inrix, congestion costs each American nearly 100 hours or $1,400 a year. Leveraging data-driven insights can drive change in both public policies and behaviours. In turn, these can result in reduced emissions, improved air quality and fewer pollution-caused illnesses.

“CAVs can be data sources providing tons of insight. Think about potholes – new vehicles with all these cameras and sensors can report them and have them fixed much more efficiently. This is just one example of entirely data-driven efficiency, much better than eyeballing and human reporting. There will be a multitude of fascinating uses.

“Organisations such as vehicle OEMs, transport authorities and insurance providers will require facilities for the secure and reliable sharing of data, and that’s where we come in. I would urge anyone interested in data driven solutions in the mobility space to visit chordant.io or our Convex service site at convexglobal.io.”

Dr Joanna White says Highways England is currently more focused on the connected bit of connected and automated mobility (CAM).

Highways England expert predicts Level4 self-driving in towns before motorways

Our Zenzic CAM Creator series continues with Dr Joanna White, Head of Intelligent Transport Systems at Highways England.

As the body responsible for designing, building and maintaining our motorways and major A-roads, Highways England (HE) is a uniquely important player in the UK connected and automated mobility (CAM) ecosystem. Here, Head of Intelligent Transport Systems at Highways England, chartered engineer Dr Joanna White, outlines its work on CAM.

Dr Joanna White, Head of Intelligent Transport Systems at Highways England
Dr Joanna White, Head of Intelligent Transport Systems at Highways England

JW: “A key aim in improving our service is to look at how we can safely use emerging technology to better connect the country – people and places, families and friends, businesses and customers. This includes what digital channels we might use, delivering a cleaner road environment and achieving net zero carbon.

“Our connected corridor project on the A2/M2 in Kent finished 10 months ago and we are just completing the evaluation. Collaboration is vital and this was a joint project with Kent County Council (KCC), Transport for London (TfL), the Department for Transport (DfT) and others. It was also part of a wider European project, Intercor.

“We are currently more focused on the connected bit of CAM, building on the services we already provide. This includes beaming information directly into vehicles (replicating what you see on the gantries) and also what data we can anonymously collect from vehicles’ positioning sensors. Can we maintain service from one part of the network to another? Can we do it in an accurate, timely and secure way? How do people feel about it?

“We try not to choose particular technologies – whether it’s radar, lidar, cellular – we are interested in all of it. It could be 5G and, via the DfT, we work closely with the Department for Digital, Culture, Media and Sport (DCMS), which leads on that. One of the most positive government actions was the requirement for mobile operators to provide 90% coverage of the motorway network by 2026.

Highways England car interior 2
Highways England in-car upcoming junction message

“We were very proud to be involved with the HumanDrive project in which a self-driving Nissan Leaf navigated 230 miles from Cranfield to Sunderland. It was a great learning experience in how to  conduct these trials safely, underpinned by our safety risk governance. We had to identify all the risks of running such a vehicle on the strategic road network (SRN), and find ways to mitigate them. It was fascinating to see how it coped on different types of roads, kept to the lines and responded to road sign information.

“Then there’s our Connected and Autonomous Vehicles: Infrastructure Appraisal Readiness (CAVIAR) project, which has been slightly delayed due to Covid. We are building a simulation model of a section of the M1, a digital twin, and we have a real-world car equipped with all the tech which will start operating in 2021. That will collect a lot of data. This is one of our Innovation competition winning projects, run by InnovateUK.

“Within Highways England we have a designated fund for this kind of research, and that means we can invest in further trials and do the work needed to provide more vehicle-to-infrastructure (V2I) communications.

“Personally, I think that Level4 self-driving, eyes off and mind off, is years away, perhaps decades, certainly in terms of motorway environments. However, we are constantly in discussion with government on these issues, for example, we contributed to the recent consultation on Automated Lane Keeping Systems (ALKS).

“Working closely with industry and academia, we have already started off-road freight platooning and are looking to move to on-road trials. We’ve had lots of discussions about freight-only lanes and the left lane is often suggested, but you have to consider the design of the road network. There are lots of junctions close to each other, so how would that work, especially at motorway speeds? At first, I see self-driving more for deliveries at slower speeds in urban areas but, as always, we will listen to consumer demand.”

For further info see highwaysengland.co.uk.

Why digital twins are crucial to the development of ADAS and CAV.

This is no game: how driving simulations save lives

Our Zenzic CAM Creator series continues with Josh Wreford, automotive manager at driving simulation software provider, rFpro.

With digital twins so crucial to the development of advanced driver assistance systems (ADAS), carmakers including Ferrari, Ford, Honda and Toyota have turned to driving simulation software provider, rFpro. Here, automotive manager Josh Wreford explains the company’s cutting-edge work.

Josh Wreford of rFpro
Josh Wreford of rFpro

JW: “While others use gaming engines, our simulation engine has been designed specifically for the automotive industry, and particularly connected and autonomous vehicles (CAVs). That’s a big difference because gaming software can use clever tricks to make things seem more realistic, whereas our worlds are all about accuracy.

“We use survey grade laser scanning to create highly detailed virtual models and have an array of customers testing many different ADAS and CAV features, everything from Level1 right up to Level5. We can go into incredible detail, for example, with different render modes for lidar, radar and camera sensors, it is possible to simulate different wavelengths of the electromagnetic spectrum for detailed sensor modelling. It is up to the customer to decide when their system is ready for production, but we save them a lot of time and money in development.

rFpro simulation Coventry
rFpro simulation: Coventry town centre

“Safety critical situations are extremely difficult to test in the real world because it’s dangerous and crashing cars is expensive! That’s why digital twins are great for things like high speed safety critical scenarios – you can test human inputs in any situation in complete safety. Whenever you have a human in play you’re going to have problems because we’re great at making mistakes and are very unpredictable! rFpro provides high quality graphics running at high frame rates to immerse the human in the loop as much as possible. This allows accurate human inputs for test scenarios like handover to a remote driver. We can even allow multiple humans to interact by driving in the same world.

rFpro simulation Holyhead
rFpro simulation: Holyhead

“Before joining rFpro, I worked at McLaren Automotive on gearbox control software, which involved very similar control coding to ADAS. Ethical questions are always interesting, but ultimately a control engineer has to decide what the next action should be based on the exact situation. Our simulations drive robust engineering and better algorithms, so you get the best reaction no matter what occurs.”

For further info, visit rfpro.com.

Thomas Sors says connectivity is the essential foundation for autonomous vehicles.

Putting the C in Connected and Automated Mobility

Our Zenzic CAM Creator series continues with Beam Connectivity CEO, Thomas Sors.

Having previously led Dyson’s Connected Vehicle programme, Thomas Sors launched Beam Connectivity in January this year. It might be one of the newest cogs in the UK automotive wheel, but its Connected Vehicle as a Service (CVaaS) product is already attracting interest from car, freight and public transport manufacturers.

TS: “When it comes to connected and automated mobility (CAM) and connected and autonomous vehicles (CAVs), we see a lot of focus on the ‘A’ part, but not so much about ‘C’, which is our focus. Connectivity is the essential foundation for automation later on, but at the moment it often doesn’t perform very well. For example, OEM apps sometimes get two point something star ratings due to problems with the initial connection and latency.

“Our CVaaS solution provides a better user experience and can unlock the value of data generated by vehicle fleets. It offers a new way of getting data from vehicles to the cloud and back-end, or to send data into the vehicle. Because we’re brand new, there are no issues with legacy software – privacy by design and security by design are embedded all the way through our process, not an afterthought or a bolt-on. That starts with ensuring that we fulfil General Data Protection Regulation (GDPR) access rights, including the right to be forgotten.

“I’ve seen quotes that by 2030 all cars will have some form of connectivity. eCall [the EU initiative to enable cars to automatically contact the emergency services in the event of a serious accident] is mandatory for new cars, and that’s just the start. It’s about transparency and explaining the benefits. If you give people the option to say ‘yes, take this data in order for me to get feature X’, then that builds trust.

“From the manufacturer or fleet operator perspective, prognostics is an interesting area – fixing things before they go wrong. Then there’s the ability to understand usage patterns and perform over the air (OTA) updates. Another thing we’re already seeing is support to improve the driving experience, for example, vehicle to infrastructure communications being used to reduce congestion. We expect that to build up quickly over the next 2-4 years.

“We’re only a few months in but we’ve already deployed an end-to-end system to several vehicles and we’re looking to do more and more. It’s not unusual for manufacturers to spend 12-18 months building a connected vehicle solution, so our platform can really speed up their development lifecycle. Why build a connectivity team when we’ve already done it very effectively?

“As to self-driving, the technology is leading the way and moving along quickly, so the focus needs to be on standards, legislation and public acceptance.”

For further info, visit beamconnectivity.com.