CGA’s simulations train autonomous vehicles to deal with environments specific to the UK.

Self-driving and smart cities: stop wishcasting and get real with predictive simulation

Our Zenzic CAM Creator series continues with Liverpool-based Jon Wetherall, Managing Director of CGA Simulation, and Max Zadow, Director of Future Coders.

By applying gaming knowledge to real-world mobility questions, CGA has created engaging simulations to study autonomous driving and smart city solutions.

JW: “My background is gaming. I used to work for the company that did Wipeout and F1 games. We made a racing game called Space Ribbon and one day, about five years ago, we got a call from The Department for Transport (DfT). They were doing a research project on virtual reality (VR) in the testing and training of drivers, specifically hazard awareness.

“We turned it into a game and it worked – people said their attitudes changed as a result of our simulations. The hardest scenario came early in the game – a parked lorry with a big blind spot – and a lot of people crashed. VR feels so visceral, the experience can be quite vivid and shocking. Of course, smarter cars will hopefully fix these types of situations.”

CGA Simulation junction and forecourt
CGA Simulation junction and forecourt

To pursue this goal, CGA received a grant from Innovate UK to create an artificial learning environment for autonomous driving (ALEAD).

JW: “The aim was to make these cars safer and we stayed true to our computer game history. We didn’t have the resources to lidar scan the whole area, so we did our own thing using mapping data. We made a digital twin of Conwy in north Wales and unlike other simulations we kept all the ‘noise’ in – things like rain. This was important because it is now well-understood that noise is a big challenge for autonomous vehicles (AVs).

“Modern autonomous driving stacks have 20 different subsystems and we generally focus on only one or two, to do with perception. There’s been massive progress in this area over recent years, to the extent that artificial intelligence (AI) can identify an individual by their gait. What’s more, you can now do this on a computer you can put in a car – this is one of the cornerstones of driverless.

“It’s not the first time people have been excited about AI. In the 50s they were saying it was only a few years away. It has taken much longer than people thought, but major problems have now been solved.

“We are lucky to have one of the world’s leading experts in radar on our doorstep, Professor Jason Ralph of The University of Liverpool, and he helped us develop the simulation. You have to feed the car’s brain, a computer, all the information it will need – from sensors, cameras, GNSS – and you can do all that in the software.”

MZ: “In particular, The University of Liverpool were interested in how weather affects things, right down to different types of rain and mist. In California, if an AV encounters conditions it can’t handle, like heavy rain, it pulls to the side of the road. That’s ok for San Francisco but not for Manchester!

“A few years ago, everyone seemed to be using the example of an AV encountering a kangaroo. How would it cope? The point is you can use our simulations to train cars, to create algorithm antibodies for once in a lifetime events and regular things in different environments. That remains an essential part of what’s needed to make AVs a reality.

“We picked Conwy partly because it has very different patterns of land use to America. An early use case for AVs is predicted to be taxis, but in the UK these are most frequently used by people who don’t own their own car, and they often live in high density housing or narrow streets. The operational design domains (ODDs) are going to have to deal with environments specific to this country – steep hills, roads which twist and turn, and changeable weather.”

Mobility Mapper

Wetherall and Zadow’s latest collaboration is Mobility Mapper, a project to create greener and more intelligently designed transport hubs. The technology underpinning Mobility Mapper has been used previously by the team to model Covid 19 spread, autonomous vehicle technology and by the Liverpool 5G Create project (funded by DCMS as part of their 5G Testbeds and Trials Programme).

JW: “E-hubs are basically an extension of what used to be called transport hubs – train or bus stations. They’ll provide charging facilities and access to different modes of transport, for example, you can drop off an e-scooter and hop into a shared autonomous car.

“Here in Liverpool, there was a big trial of e-scooters, big in international terms not just UK. The worry was that a lot of them would end up in the canal, but that didn’t happen. The trial was incredibly successful. It’s all about linking that movement and nudging people away from car ownership.”

MZ: “We were already thinking about how Jon’s technology could be used for mobility as a service (MAAS) when we attended a virtual future transport conference in LA with the Centre for Connected and Autonomous Vehicles (CCAV).

“That was an influence, as was an Intelligent Transportation Systems (ITS) trade show in Copenhagen, where we saw an autonomous tram system designed to take bicycles. It was a small step from there to imagining autonomous trams carrying autonomous delivery pods.

“This is classic smart city stuff but you need to know how these e-hubs are likely to be used, with no track record, nothing to go on. We need simulated environments to make best guesses in. That’s Mobility Mapper.”

JW: “It is early days, still in the development phase, but the authorities in both Manchester and Liverpool have agreed there’s a need for such a predictive simulation tool.”

As we wrap-up a thoroughly enjoyable interview, Max dons his Director of Digital Creativity in Disability hat: “Autonomous delivery bots are basically electric wheelchairs without a person, so there’s clearly a potential benefit, but there needs to less wishcasting and more real work on how accessibility will be affected.”

For further info, visit CGAsimulation.com

Mitchell Gingrich on the Elaine Herzberg tragedy and why the future will be autonomous.

Self-driving experts across the world agree: the trolley problem is a nonsense

Thanks to LinkedIn, self-driving experts from the UK and New Zealand have united to decry the trolley problem in relation to driverless cars.

Mitchell Gingrich, President of Autonomous Consulting in Christchurch, New Zealand, responded to our interview with Professor John McDermid, Director of the Assuring Autonomy International Programme at the University of York, saying: “Spot on about the trolley problem.”

Professor McDermid had asserted that: “The trolley problem is a nonsense… all these elaborate versions require self-driving vehicles to make distinctions that you or I could not.”

The trolley problem is a thought experiment which runs like this: Imagine there’s a runaway trolley and, ahead, five people are tied to the track; You are standing some distance off, next to a lever. If you pull it, the trolley will switch to a track only one person is tied to. What do you do?

Or, as Professor McDermid puts it: “Who do you save, a child or an older person? The child because they can be expected to live longer and benefit more. However, this is based on false assumptions. I don’t believe in the split second of a crash you go into that sort of thought process – you focus on controlling the vehicle and in most cases the best option is to (try to) stop.” 

I explained to Gingrich that my own opinion on the trolley problem has changed dramatically. When I wrote “Autonomous now: the shift to self-driving” in 2018 I was quite taken with it. In 2019, I wrote “The driverless dilemma: touchstone or red herring?”. Now, I am much more with Professor McDermid.

Gingrich opined that the March 2018 fatal accident involving an Uber Advanced Technology Group (Uber ATG) self-driving vehicle can aid in evaluating the trolley problem. The National Transportation Safety Board (NTSB) in the US recently completed an 18-month-long investigation and concluded there were 20 contributing factors. Some of those concerned the software misclassifying a pedestrian. A significant contributing factor was the safety driver’s inattentiveness.

The trolley problem assumes that a person or system is not only aware of the task of driving but also of the present and future merits of the lives of road users, he says. However, experience demonstrates that, sadly and all too frequently, road users pay the price for a lack of vigilance.

It turns out that Gingrich, a lawyer by trade, has been on quite a journey with autonomous vehicles himself. From working for Uber ATG in Phoenix, seeing first-hand the fallout from the Elaine Herzberg tragedy, to relocating to New Zealand and setting up Autonomous Consulting to push the case for driverless transport.

“I’m convinced that the future will be autonomous,” he says. “Whether it’s on public roads, in the air or on the seas, we will be utilising autonomous technology to transport our people and goods. That’s what autonomy is promising, but we’re in an interim period.

“New cars have advanced driver assistance systems (ADAS) like lane keep assist and automatic emergency braking. Some of us have been using cruise control for a long time, now it is adaptive – the car will keep its distance. These are autonomous features but not autonomy and we need to educate the public about the difference.

“Autonomy is about safety, resources and the environment. These ADAS systems expect me to pay attention to the road and the robot, and that’s not a recipe for safety. 93-94% of accidents are caused by human error, usually distraction – we think we’re paying attention, but we aren’t. There are repair and maintenance issues too, for example, around the correct calibration of sensors.

“In terms of resources, my personal car is a depreciating asset that isn’t used 90% of the time. Autonomous vehicles will also have a tremendous impact on town planning. An architect in the US imagined Manhattan pedestrianised and it freed up 60% of space.

“My freedom is not challenged by not having a personal vehicle. I’d have more money in my pocket and could use my smartphone to access different vehicles for different purposes.”

For further info, check out the white paper “The Driverless Revolution: What Next? The Future of Autonomous Vehicles in New Zealand”, by Mitchell Gingrich and Steven Moe, and this related podcast.

Carsofthefuture.co.uk is media partner for event boasting most senior collection of technology, AV, EV and ADAS leaders ever seen.

Carsofthefuture.co.uk is media partner for Car of the Future 2021

Carsofthefuture.co.uk has signed a media partnership agreement with Reuters Events for the two-day Car of the Future 2021 online event in June.

Intended to drive vehicle change to create a safer and more sustainable world, the event boasts the most senior collection of technology, autonomous vehicles (AV), electric vehicle (EV) and advanced driver-assistance system (ADAS) leaders ever seen.

High profile speakers include: Michelle Avary, Head of Automotive and Autonomous Mobility at The World Economic Forum; Carla Gohin, Research & Innovation Senior Vice President at Stellantis; Henrik Green, Chief Technology Officer at Volvo Cars; Sajjad Khan, Member of the Board of Management at Mercedes-Benz AG; José Muñoz, Global Chief Operating Officer at Hyundai Motor Company; and Dr Ken Washington, Chief Technology Officer at Ford Motor Company.

Carsofthefuture.co.uk founder, Neil Kennett, said: “We’re delighted to be a media partner for this exciting Reuters event which fits perfectly with our mission to chart the development of, and encourage sensible debate about, driverless cars in the UK. Full self-driving is a way off yet but as ever more advanced driver assistance systems become available, notably Automated Lane Keeping (ALK), it is vital that the public understands where we are with the technology and what it can and can’t do.”

Car of the Future 2021 will take place on 14-15 June. See reutersevents.com 

Ahead of this, Reuters Events will host a free webinar, Connectivity: Smarter and Safer Vehicles, on 24 March. Confirmed speakers include: Michelle Avary; Szabi Patay, Head of Automotive at Commsignia; Prashant Tiwari, Director of Intelligent Connected Systems at Toyota North America; and Frank Weith, Director of Connected and Mobility Services at Volkswagen Group America. Register here.

#ReutersEventsAutomotive

The key to the future of self-driving is education, education, education, says Millbrook’s Stoker.

On track and in virtual space, Millbrook tests cars of the future

Our Zenzic CAM Creator series continues with Peter Stoker, Chief Engineer for Connected and Autonomous Vehicles at Millbrook.

Part of CAM Testbed UK, Millbrook Proving Ground in Bedford boasts 700 acres of private roads on which to develop and test connected and autonomous vehicle (CAV) technologies. As Chief Engineer, Peter Stoker is right at the forefront of self-driving in the UK.

Peter Stoker
Peter Stoker, Chief Engineer for Connected and Autonomous Vehicles at Millbrook

Please can you outline Millbrook’s work on connected and automated mobility?

“My primary role is to bring focus to two testbeds, our CAV testbed and our 5G testbed. We are not a purpose-built CAV testbed – we have safety, propulsion and conventional vehicle test facilities too – so CAV is something we’ve blended into the existing business.

“For the CAV testbed, we partnered with the UK Atomic Energy Authority (UKAEA), particularly the Remote Applications in Challenging Environments (RACE) division, to provide a controlled urban environment. We have three open source StreetDrone vehicles and miles of track with targets for very precise measurements, accurate to 1-2cm. We offer safety driver training and also have a simulation environment for driver-in-the-loop and hardware-in-the-loop testing. The whole idea is to fail in private, not in public, and to progress, to evolve out of the testbeds and on to open roads.

“The 5G testbed is a completely separate consortium, backed by the Department for Digital, Culture, Media and Sport (DCMS). We have 59 masts looking at all types of connectivity and I’d say the millimetre wave at 70GHz is currently the most interesting.”

Millbrook graphic
Millbrook Proving Ground graphic

What major shifts in UK road transport do you expect over the next 10 years? 

“Getting the crystal ball out, I see increased use of connectivity in existing vehicles and some very interesting new use cases – buses connected to city networks, video analytics from cameras, smart ambulances streaming live data, autonomous deliveries on campuses. What I don’t see within 10 years is millions of privately owned driverless cars. That will start in the luxury sector but to begin with it will be more about transporting goods.”

How do you see the testing framework for CAVs developing?

“There’s a lot of simulation in the automotive world – crash testing, fatigue testing, computational fluid dynamics. These days, manufacturers are developing whole vehicles before building a prototype. You have to have a good simulation on a good simulator and there’s an interesting shift that needs to happen on regulation. It’s early days on that, but it’s essential.

“The strength of virtual space is that you can run hundreds of scenarios in machine time – not only set up complicated scenarios that would take days with real cars, but actually speed up the process so it runs faster than real time. The national scenario database is already really good and regulation will move to being a mixture of real and virtual certification – global, European, UK and perhaps even city-specific. We are happy to advise, but don’t set policy.”

What are the biggest challenges in the shift to self-driving and how can these risks be mitigated?

“The key to the future of self-driving is education, education, education – for everyone, the public, vehicle manufacturers, the aftermarket, recovery operators. We have to work on the terminology – autonomous, driverless, CAV, CAM – it’s confusing, even to people who know what they’re talking about.

“At the moment, we’re making it harder to understand, not easier. We’re in a really grey area of transition with different trade names for systems. There’s a lot of groundwork needed to prepare people and, for example, the brilliant website mycardoeswhat.org does a great job of trying to explain it.

“If you get into a hire car, you need to have the right expectation of what it does and what it doesn’t do. If you buy a new car, you should read the manual, but how many people do? Especially with Covid, more cars are being delivered with minimal interaction – it’s a case of “there’s the key, where’s the station?”. Too often, the customer handover just isn’t there.

“How are garages, the aftermarket and the amber light sector going to deal with all this? Basic questions like how do you put it in neutral? ADAS has already led to huge changes in training and skill sets – how to calibrate and monitor them.

“We haven’t talked about over-the-air (OTA) updates, cameras embedded in the tarmac or even electrification – there’s a huge amount of things! How do you learn about them? Hopefully in testing rather than in crash situations.”

For further info, visit www.millbrook.co.uk

IPG expert says simulations can be better than real world testing.

The road to self-driving: Vehicle Certification Agency urged to accept simulation

Our Zenzic CAM Creator series continues with Elliot Hemes and Will Snyder of IPG Automotive UK.

Chartered engineer and self-proclaimed simulation evangelist, Elliot Hemes, previously worked in global product marketing at Jaguar Land Rover (JLR), covering future automotive trends. Now managing director at IPG Automotive UK, he works with big-hitters including Ford and JLR to provide virtual test driving environments. Here, in discussion with IPG Automotive sales engineer Will Snyder, he explains how simulation will be vital for the shift to self-driving.

EH: “As vehicle systems become more complex and interconnected, we ensure that manufacturers can virtually test their systems in realistic traffic situations, using an approach that is quick and accurate.”

WS: “IPG Automotive started in vehicle dynamics, then advanced driver assistance (ADAS) was the next big thing, now it is autonomous vehicles (AVs). The amount of testing required to achieve true autonomy is impossible to do in the real world. I believe we will get to Level5 autonomy, but there are some big hurdles such as accounting for human drivers in other vehicles – it would be much easier if every vehicle on the road was autonomous and connected.”

EH: “We might see it first in a city environment, restricted to less than 20mph. People put up lots of reasons why full autonomy can’t happen, but a blanket statement of “it’s too hard” just isn’t good enough. You could say, for example, you can’t use the M6 Toll unless you have vehicle-to-vehicle (V2V) communications. That would enable platooning – if one vehicle brakes, they all know about it. 99% of the time, great brakes will get you out of trolley problem scenarios.”

WS: “You cannot say AVs will never crash. The question should be: are they safer than human drivers? And the answer is yes, they definitely will be. When people talk about ADAS deskilling drivers, my response is: what skills?! It is well proven that concentration is badly affected by holding a conversion with someone else in the car, let alone fiddling with the radio or holding a hands-free phone call. We all get defensive about our driving prowess, but it needs to be recognised that the bar for driving is very low. You don’t even learn how to drive on a motorway – that’s not part of the driving test, which is one reason you get so many middle lane sitters.”

EH: “At the moment none of the major vehicle manufacturers are taking the leap to level 4/5, partly because they’re worried about litigation. Once the legislation is in place you will see truck platooning very quickly because of the enormous cost savings. It will require vehicle-to-everything (V2X) and V2V communications. The current ADAS technology is great but the systems are very digital and can have issues with poor light and bad weather. It will improve over time.”

WS: “We could even skip Level 3 as it is safer to move straight to Level4. In my opinion, the driver needs to be either active or not – expecting them to retake control in time in an emergency situation is just not realistic.”

EH: “Over the next decade you will see the gradual adoption of ADAS technologies. Adaptive cruise control (ACC) will become standard and that will avert so many crashes, particularly rear-end shunts. It doesn’t take away from the driver, it just intervenes. However, there is a concern about the performance of these systems in low light conditions – we need much more focus on the edge cases.

“OEMs engineer to perfect Euro NCAP test conditions. In the real world, what happens if the sun is low in the sky, or the pedestrian steps out more quickly? You cannot practically test these kinds of things on a track, which is why you have simulations. You can study that edge case over and over. We’ve had customers ask us to recreate exactly the same environment as the test track, including noise that’s nothing to do with the question in hand. Our advice is not to try to simulate the real world – design the simulation to study exactly the question you want to answer.

“In this way simulation can be better than the real world. Say, for example, you want to test a pedestrian Autonomous Emergency Braking (AEB) function in the early stage of development. You just want to know if, in the CarMaker environment, it performs the right output – applying enough braking to stop before it hits the dummy pedestrian. The next step is to put that software into an ECU. You can do all that with hardware-in-the-loop testing, improving the capability step-by-step without building a prototype vehicle or driving billions of real-world miles.

“Further still, under heavy braking, the front camera might well point to the floor, maybe the car might start to drift. You can do all that in simulation, to prove that your algorithms hold up and the car does what you think it will do.”

WS: “Another problem with running prototype vehicles on test tracks is that you spend an awful lot of time fixing thousands of other small faults before you get on with what you’re supposed to be testing. We can get all these edge cases done before you get to the test track. By using simulations you get so much more out of the valuable test track time.”

EH: “The ‘systems engineering V’ has all the theoretical stuff on the left, then hardware on the right and validation at the top. Ideally we’ll get to the stage where only validation happens in the physical world. Until the homologation and certification authorities are able to accept simulation results you can’t do enough testing to get AVs on the road. That’s why it is such a vital part of the Zenzic CAM Roadmap.”

For further info, visit ipg-automotive.com

The UK’s National Physical Laboratory is working on a framework for virtual sensor testing.

Developing test frameworks which build a bridge of trust to driverless cars in the UK

Our Zenzic CAM Creator series continues with Andre Burgess, digital sector strategy leader at the National Physical Laboratory (NPL).

NPL is the UK’s National Metrology Institute, responsible for developing and maintaining the national primary measurement standards. For over a century, it has worked to translate scientific expertise into economic prosperity, skilled employment and improved quality of life, covering everything from cancer treatments to quantum computing. In the self-driving sector, Andre Burgess’s focus is test frameworks to support the deployment of safe and reliable autonomous transport on land, sea and air.

Andre Burgess, digital sector strategy leader at NPL
Andre Burgess, digital sector strategy leader at NPL.

AB: “We’re all about measurement and how it can be applied to the autonomous vehicle space. Artificial intelligence (AI) and machine learning represents a great transformation. Whereas in the past we’ve developed tests for whether a human is fit to do something, in this new world we need a new set of tests to assure autonomous systems and build a bridge of trust. This is not a one-off test, it is ongoing work to develop new methodologies and support the development of new standards.

“One of the key things this country has developed is Testbed UK, a collaboration between government and industry which has delivered a formidable testing environment – a network of safe, highly controlled environments increasingly linked to virtual testing.

“Working with the Met Office on behalf of the Centre for Connected and Autonomous Vehicles (CCAV) over the last year we have focused on the usability and reliability of sensors in different weather conditions. How do you know if sensors are performing well? How do you validate the decision making? How do you apply metrics and KPIs to this? Having undertaken a proof of concept for a testing framework, we are confident this can be delivered and deployed throughout the industry.

“There is much talk about pass/fail tests but our focus is confidence, improving confidence in the outputs and building confidence in the system. We collaborate across the board, with regulators, testers, developers – engaging with them to understand their requirements.  Our approach is to provide tools which help reduce the barriers to innovation without compromising regulation and safety assurance.  Striking the right balance between reliability and usability is key. Our work will support validation and help the UK to influence international standards.

“The biggest transformation in road transport over the next decade will be emissions reduction and self-driving vehicles and smart mobility systems will be key drivers. It will require changes to infrastructure and changes in habits – batteries or hydrogen will be critical, perhaps a need to drive more slowly, maybe less private car ownership. The impact of Covid has led to a move away from trains and buses, so a resurgence of public transport is vital.

“In terms of self-driving, I envisage there will be personally driven vehicles and on-demand vehicles. Increasingly I expect we’ll see a transition into smaller public transport vehicles, perhaps for 8-10 people, in continuous use. There’s real value in getting to places that don’t have bus stops and there’ll be benefits from autonomous safety features too. It won’t be everywhere but I hope within 10 years there’ll be good examples of that in the UK. The question is will we be ahead or behind the curve? In some more authoritarian countries implementation might be faster but maybe not better.

“We’ll also start to see autonomous low level aviation and autonomous shipping, for example, short cargo sea freight. Combined, these things will make roads less congested. Key transport stakeholders have expressed the need to integrate, to pursue the most efficient way to get goods into and around the UK.

“For our part, we are focused on the framework for virtual sensor testing, and also integration between virtual and physical testing. To give an accurate level of confidence requires understanding the common metrics and the areas of uncertainty. The human factor is so important, for example, what about the people with cars that don’t have this tech – how do they respond?”

For further info visit www.npl.co.uk.

Autonomous vehicle software specialist set to become a major UK success story.

Oxbotica secures huge BP investment and targets anything that moves people or goods

Oxford University spin-out, Oxbotica, has been on our must-speak-to list for a while, and on Friday we got some Zoom time with the top people – CEO, Ozgur Tohumcu, and co-founder and CTO, Professor Paul Newman.

It’s three weeks since the autonomous vehicle software specialist announced a US$47m Series B investment led by bp ventures. Yes, that BP. The press release asserts that this will accelerate the deployment of Oxbotica’s platform “across multiple industries and key markets”, but Prof. Newman is quick to emphasise this is not about robotaxis, not even about cars.

Prof Paul Newman, Oxbotica co-founder and CTO.
Prof Paul Newman, Oxbotica co-founder and CTO.

“We’ve been deploying our software in industrial settings – mines, airports – for six years now, and not only in the UK, in Europe, North America, Australia,” he says. “Everyone talks about cars but all vehicles are game for us – anything that requires moving people or goods. That’s the advantage of being pure software.

“We’re a global business and raising this kind of money during a pandemic speaks volumes. We have clear water behind and blue sky ahead. Having these new investors and strategic partners will really allow us to drive home the opportunities that came last year. Vehicles are common but software of our standard is not. We’re showing that great IP can be generated everywhere, not just Silicon Valley, and that’s very refreshing.”

While Prof. Newman focuses on the vision, Tohumcu provides the detail. “Since the funding announcement, the exchange rate means it’s actually worth closer to $50m, so that’s not bad,” he says. “We’ve just conducted a review of the business and it was pleasing to see that we achieved exactly what we said we’d do two years ago – delivering results against measurable goals.

Ozgur Tohumcu, Oxbotica CEO.
Ozgur Tohumcu, Oxbotica CEO.

“We’ve done a lot of planning recently – some well-defined, other things we’re still making choices about. We’ve been approached by new companies interested in using our tech and there are exciting deals in the pipeline, deals that come with investment. We’ll be making further announcements over the coming weeks and months.”

Make no mistake, Oxbotica is set to become a major UK success story… just don’t mention driverless cars!

UK government sparks global business sharing transport sector data.

Sharing data collected by connected cars

Our Zenzic CAM Creator series continues with Mika Rasinkangas, founder and President of Chordant.

Originally part of the global wireless and internet of things (IoT) research company, InterDigital, Chordant was spun out as a separate business in 2019, as “a dynamic data sharing expert”. The spark was a UK government initiative to test the hypothesis that regional transportation data has tremendous value, especially when shared between different parties. The results of this two-year public-private partnership were startling.

Please can you outline your work on connected and automated mobility?

MR: “First of all we looked at the mobility space. There’s the segment that maintains the road network and their supply chain, the mobility service providers – bus companies, train operators and new entrants such as Uber – then the whole automotive sector, OEMs and their supply chain partners. We sit right in the middle of all this and our role is data exchange – bringing dynamic data sets from different sources to come up with something different that solves problems with data driven solutions.

“The hypothesis was that a lot of data in the transport segment was either underutilised, in really small silos, or not utilised at all. The idea was to work with different entities – organisations, companies and universities – to bring data together and make it more widely available, leading to innovation and efficiency.

“It was obvious from early on that this was not only a technical issue, there was a human element. Data is controlled by different entities and departments so the challenge was to get these different data owners comfortable with the idea that their data could be used for other purposes, and to get consumers comfortable with it too. The result was more usable and more reliable dynamic data.”

What major shifts in UK transport do you expect over the next 10-15 years?

MR: “Last mile transport, micromobility solutions are ballooning and Covid19 will only accelerate this. People are walking, scootering and biking more, making short trips by means which don’t involve public transport or being in close contact to others.

“In terms of automotive, we’re living through a massive change in how people perceive the need to own a car, and this shift in perception is changing the fundamental business models. Autonomous vehicle technology keeps developing, connected vehicles are everywhere already and electric cars represent an ever bigger proportion of the vehicle population. In all these segments data utilisation will continue to increase. New cars collect huge amounts of data for lots of purposes and this can be used for lots of things other than what it was originally collected for.”

Can you address the data privacy concerns surrounding connected cars?

MR: “Data privacy is a multifaceted topic. On the one hand, Europe has been at the forefront of it with GDPR. That puts businesses operating in Europe on a level playing field. In terms of connected and autonomous vehicles (CAVs), these regulations set limitations on what data can be harvested and what has to be anonymised in order for someone to use it. It fits the norms of today’s society, but you can see in social media that this kind of privacy seems less important to younger people, however perspectives vary greatly and companies need to be transparent in usage of people’s data.

“From a business perspective, we have to take privacy extremely seriously. The explosion of data usage can have unintended consequences but by and large the regulatory environment works quite reasonably.

“We typically deal with conservative entities which put privacy and security in the middle of everything – if there’s any uncertainty it’s better to not do it, is the attitude. Think of all the sensitive personal data that entities like car companies and mobile telephone companies have. It can give an extremely accurate picture of peoples’ behaviour. There are well established procedures to anonymise data so customers can be comfortable that their personal data cannot be identified.”

What are the main risks in the shift to self-driving and how can these be mitigated?

MR: “One could talk about a lot of different challenges. What about the latency in connectivity in order to ensure processing takes place fast enough? There’s a gazillion of things, but to me these are technical nuts that will be cracked, if they haven’t been already. One of the biggest challenges is the interaction between human-controlled vehicles and automated vehicles. When you add in different levels of driver assistance, urban and rural, different weather conditions – all sorts of combinations can happen.

“The UK is at the forefront of CAV testing. There are government sponsored testbeds and companies are running trials on open roads, so the automotive industry can test in real-life environments. We cannot simulate everything, and the unpredictability of interactions is one of the biggest challenges. A traffic planner once told me that in his nightmares he sees a driverless car heading toward a granddad in a pick-up truck, because there’s just no telling how he might react!”

Is there anything else you’d like to mention?

MR: “I’d like to address the explosion of data usage in mobility and how dynamic data enables not only efficiency improvements but new business models. According to recent studies by companies like Inrix, congestion costs each American nearly 100 hours or $1,400 a year. Leveraging data-driven insights can drive change in both public policies and behaviours. In turn, these can result in reduced emissions, improved air quality and fewer pollution-caused illnesses.

“CAVs can be data sources providing tons of insight. Think about potholes – new vehicles with all these cameras and sensors can report them and have them fixed much more efficiently. This is just one example of entirely data-driven efficiency, much better than eyeballing and human reporting. There will be a multitude of fascinating uses.

“Organisations such as vehicle OEMs, transport authorities and insurance providers will require facilities for the secure and reliable sharing of data, and that’s where we come in. I would urge anyone interested in data driven solutions in the mobility space to visit chordant.io or our Convex service site at convexglobal.io.”

Dr Charlie Wartnaby says there’s an industry consensus that Level3 self-driving is not reasonable if it requires quick driver intervention.

Self-driving world first: multi-car cooperative crash avoidance

Our Zenzic CAM Creator series continues with Dr Charlie Wartnaby, chief engineer at Applus IDIADA.

Way back in 2019 we covered IDIADA’s role in the construction of the new CAVWAY testing facility, and that investment continued with a large new venture. With a PhD in physical chemistry from the University of Cambridge, Charlie Wartnaby was technical lead for the ground-breaking Multi-Car Collision Avoidance (MuCCA) project.

Charlie Wartnaby, chief engineer at Applus IDIADA
Charlie Wartnaby, chief engineer at Applus IDIADA

CW: “Certainly the funding from the Centre for Connected and Autonomous Vehicles (CCAV) for MuCCA and CAVWAY were big wins for us. Traditionally, we’d focused on automotive electrics and engine management, but we could see there was all this exciting CAV work. Now we’re working with an OEM I can’t name to run an field operational test using our IDAPT development tool – a high performance computer with GPS and car-to-car communications – as a spin-off from MuCCA.

“With the MuCCA project, we think we achieved a world first by having multiple full-sized vehicles do real-time cooperative collision avoidance. We still have the cars for further R&D when time, budget and Covid allow.

IDIADA’s Multi-Car Collision Avoidance (MuCCA) project

“In the UK, we’re focussed on building a new proving ground (CAVWAY) near Oxford, which should open in 2021. There’s also our CAVRide Level4 taxi project, at our headquarters near Barcelona. CAVRide shares some of the technology developed for MuCCA and they’ve done some really interesting vehicle-in-the-loop testing, having the real vehicle avoid virtual actors in a simulation environment.

“In the short term, we’re really working hard on the C in CAV. Connected vehicles offer massive safety and efficiency improvements, for example, by warning about stopped vehicles or advising on speed to get through traffic lights on green. There’s a bit of a VHS versus Betamax situation, with both WiFi-based short-range communications and the C-V2X 5G-based protocol, so we’ve upgraded IDAPT to support both.

“Personally I think that while heroic work by the big players shows robotaxi applications are feasible, economic viability is a long way off, 2030 maybe. Watch the latest Zoox and Waymo videos from America, they’re mesmerising! No way is that kind of tech going to be installed in private cars any time soon because it’s eye-wateringly expensive. Think about the costs involved in making every taxi driverless – it’d be out of all proportion to replacing driver salaries, especially considering backup teleoperators and maintenance and charging personnel.

“These big self-driving companies aren’t operating in the UK yet, but we do have very successful smaller players with intellectual property to sell. The UK government has been supporting a good number of R&D projects, via the CCAV and UK Research and Innovation (UKRI), and the regulatory environment has been reasonably friendly so far.

“I feel the first practical applications are likely to be low-speed shuttle buses and small autonomous delivery droids, but trucking is a very important area. If lorry drivers were permitted to stop their tachographs while napping in the back of the cab once on the motorway – only clocking up hours for parts of long journeys – that would make a viable economic case for a Level4 operating design domain (ODD) of ‘just motorways’, which is harder to justify merely as a convenience feature in private cars.

“In terms of current tech, emergency lane keeping systems (ELK), to stop drifting, are a major breakthrough, requiring cameras, sensors and autonomous steering. I welcome the road safety, however, if drivers engage automation systems like ALKS (automated lane keeping) by habit, for sure their skills will be affected. Perhaps there’s a case for the system enforcing some periods of manual driving, just as airline pilots perform manual landings to stay in practice even in planes that can land themselves.

“Concerns about timely handover are well-founded and I think there’s an industry consensus now that Level3 is not reasonable if it requires quick driver intervention. We see up to 20 seconds before some unprepared drivers are properly in control when asked to resume unexpectedly. It really requires that the vehicle can get itself into (or remain in) a safe state by itself, or at least there needs to be a generous takeover period. The difference between L3 and L4 is that the latter must always be able to achieve that safe state.”

For further info, visit www.idiada.com

Prof John McDermid says the trolley problem is a nonsense, requiring self-driving vehicles to make distinctions that you or I could not.

Why assuring machine learning is crucial to self-driving

Our Zenzic CAM Creator series continues with Professor John McDermid OBE FREng, Director of the Assuring Autonomy International Programme at the University of York.

Professor John McDermid has been Director of the Assuring Autonomy International Programme, a partnership between Lloyd’s Register Foundation and the University of York, since 2018. He advises government and industry on safety and software standards, including Five and the Ministry of Defence, and was awarded an OBE in 2010. The author of 400 published papers, his 2019 article, Self-driving cars: why we can’t expect them to be ‘moral’, was highly critical of the oft-quoted trolley problem in relation to driverless vehicles.

Professor John McDermid, University of York
Professor John McDermid, University of York

PJM: “I’ve been at York for 30 years working on the safety of complex computer-controlled systems. What you define as complex changes all the time. In January 2018 we started a new programme, looking at the assurance of robots and autonomous systems, including automated mobility, but also robots in factories, healthcare and mining.

“It’s important to demonstrate the safety and security of novel technologies like machine learning, but there’s often a trade-off involved, because you can make things so secure they become unusable. If I open my car with the remote key I have a couple of minutes before it automatically locks again, and there’s a small possibility that someone could get their finger trapped if they try to open the door just as it automatically re-locks. We encounter these types of trade-offs all the time.”

What major shifts in UK transport do you expect over the next 10-15 years?

PJM: “Over the next decade we will get to Level4 autonomous driving, so in defined parts of the road network cars will drive themselves. We will solve the safety problems of that technology, but I’d be surprised if it is within five years. Despite the rhetoric, Tesla’s approach is not on track for safe autonomous driving within the year.

“At the same time, there will be a trend towards Mobility as a Service (MAAS). I love my car, but I’ve had it for 18 months and have only driven 7,000 miles. I sometimes ask myself why I have this expensive piece of machinery. A recent study showed that the average car in the UK is only used for 53 minutes a day. Mostly, they sit doing nothing, which, considering the huge environmental impact of manufacturing all these vehicles, is very wasteful.

“If I could call upon a reliable autonomous vehicle and be 99% certain that it would arrive in a timely manner, say within five minutes, I’d probably give up my car. It should also be noted that the two trends go hand-in-hand. Having Level4 is critical to achieving MAAS, delivering all the convenience of having your own car without any of the hassle.”

Can you address some of the data privacy concerns surrounding connected cars?

PJM: “We are back to this issue of trade-offs again. I want my MAAS so I’ve called it up and given the service provider some information about where I am. If they delete that information after I’ve paid then I’m prepared to accept that. What if the company wants to keep the information but won’t allow access except for law enforcement – would that be acceptable to the public? What can government agencies require this company to do?

“Another example: What if your 10-year-old daughter needs MAAS to take her to school? A reasonable concerned parent should be able to track that. What if the parents are divorced, can they both access that data? There’s clearly a privacy issue and there needs to be a legislative framework, but it’s a balance. For the purposes of getting from A to B, most people would accept it, so long as their data is normally kept private.”

Can you address concerns about the trolley problem in relation to self-driving cars?

PJM: “My basic feeling is that the trolley problem is a nonsense, a distraction. All these elaborate versions require self-driving vehicles to make distinctions that you or I could not.

“The big Massachusetts Institute of Technology (MIT) study sets a higher standard for autonomous vehicles than any human can manage. Who do you save, a child or an older person? The child because they can be expected to live longer and benefit more. However, this is based on false assumptions. I don’t believe in the split second of a crash you go into that sort of thought process – you focus on controlling the vehicle and in most cases the best option is to (try to) stop.

“I don’t know why people find the trolley problem so compelling, why they waste so much energy on it. I really wish it would go away. Fortunately, most people seem to be coming to that conclusion, although one of our philosophy lecturers strongly disagrees with me.”

Which sectors do you think will adopt self-driving first?

PJM: “Farming applications might come first as they are short of people in agriculture and the problems are simpler to overcome. If you geofence a field where you wish to use a combine harvester and equip it with technology so it doesn’t run over a dog lying asleep in the field – there’s already tech which is getting quite close to that – then that’s an attractive solution.

“Last mile freight via small delivery robots (like Nuro in the US and Starship here in the UK) might also come quickly, but longer distance freight will probably require a segregated lane. Even last mile robots come with risks, like people tripping over them.

“There’s a lot of commercial desire for robotaxis, and this is potentially a very big market. There are already genuine driverless taxis in the US now, but they have a much simpler road structure than here in the UK.

“The crucial technical bit is finding accepted ways of assuring the machine learning. I would say that, I work on it, but without that regulators and insurers won’t allow it.”

For further info, visit www.york.ac.uk/assuring-autonomy