Kevin Vincent, Director at the Centre for Connected and Autonomous Automotive Research, says the UK is at the cutting edge of driverless car technology and business models.

The UK: probably the best self-driving roadmap in the world

Our Zenzic CAM Creator series continues with Kevin Vincent, Director at the Centre for Connected and Autonomous Automotive Research (CCAAR), part of Coventry University’s Institute for Future Transport and Cities.

CCAAR brings together expertise from both academia and industry, working in partnership with Horiba Mira’s engineering and test teams (Horiba Mira is a global leader in advanced vehicle engineering, research and product testing). With an impressive 150 Post Graduate Research (PhD) students, the centre plays a key role in addressing the skills gap as the automotive sector presses ahead with connected and autonomous vehicle (CAV) development. It’s an important hub for developing new connected and automated mobility products and services, covering everything from design and safety to human factors, such as trust and perception.

Right, let’s start with a big question: How is the UK doing in terms of becoming a world leader in self-driving?

KV: “In partnership with the government’s Centre for Connected and Autonomous Vehicles (CCAV), Zenzic has overseen the cost-effective creation of a complete ecosystem of testbeds. It has also delivered a comprehensive roadmap, probably the best in the world. We have great disruptive companies, such as Aurrigo, who are pushing the boundaries of both the technology and the business model. The UK is absolutely at the cutting edge.”

So far, so good. How do we build from here?

KV: “First, we have to get the right skills in place to push this at pace and scale. There’s an important challenge to understand the near-misses because, even if accident rates are down, we might not be getting the full picture. Growing trust is vital and harmonious regulation is key – from understanding the operational design domains, through safety case development, to vehicle resilience and cybersecurity, it all has to fit together. We have to get the MOT right too. Once you have fully connected vehicles with self-driving features receiving over-the-air (OTA) updates, the current test will not be fit for purpose. You certainly can’t leave it three years from new.”

How long are we talking before Level4 and 5 autonomy is achieved? For definitions please see our glossary.

KV: “In some respects, under tightly controlled domains with vehicles where the fallback position is the system rather than the driver, Level4 is already with us (for example at Heathrow terminal five). For wider adoption, my opinion has changed over the last couple of years. I can now see highly automated vehicles at Level4 in numbers by 2030. There’s still a question mark over whether you go straight to Level4, or use Level3 as a stepping stone. It is important that the customer understands the capability of the vehicle and certainly doesn’t overestimate it, as that is very dangerous. Level5 in terms of anytime anywhere automation is very difficult; I sometimes wonder if it will be possible, and whether people will even want it.”

Which sectors will be first?

KV: “If the industry is smart it will focus on freight, buses, trams and last-mile solutions first. I expect robotaxis will get there about the same time, with more gradual adoption for passenger cars. There will be sea-changes in the automotive industry over the next 10-15 years. Rather than shifting metal, vehicle manufacturers should look to service level agreements like they have in aviation. Farming is interesting because of the defined areas and repetitive nature of the work.”

Is there anything you’d like to expand on?

KV: “Digital twinning is a key part of our activity through CAM Testbed UK projects such as Assured CAV Highway, Assured CAV Parking and Midlands Future Mobility. Because the physical testing of all CAVs, involving billions of driving miles, simply isn’t feasible. It has been recognised as vitally important that digital framework methodologies are developed to create simulated engineering and synthetic environments, with cybersecurity as an overriding consideration. We have to get to the point where you can have confidence in the results, to the extent that it will stand up in a court of law.”

… And there the interview wound-up and I mused on a near miss of my own that very morning. A red BMW flew down my local high street, engine roaring, prompting much shaking of heads. It didn’t get 50 yards before getting stuck in traffic.

“My background is safety,” said Vincent. “Years ago, I thought self-driving was a bit Big Brother, but there are 1,700 road deaths a year in the UK. Think about the vast cost in terms of grief for families and pound notes. Self-driving cars will get you where you want to go, by the most efficient route, and potentially you can relax or read your emails on the way. And the only compromise is not breaking the speed limit.”

As final points go, that’s quite compelling.

For more information: CCAAR is part of Coventry University’s Institute for Future Transport and Cities (IFTC). From accelerating the progression towards zero-carbon transport and developing inclusive design practices to ensuring the safe implementation of autonomous transport solutions, IFTC is central to solving global mobility challenges.

Connected cars: whose data is it anyway?

In a prime example of the potential of connected cars, Volvo recently announced that it will share real-time data with the aim of improving road safety.

Some Volvos already warn each other about local threats such as slippery surfaces or broken down vehicles. The idea is to make this kind of anonymised data available “for the greater good”, as Håkan Samuelsson, president and CEO of Volvo Cars, put it.

So far so altruistic, but what about all the other data being collected?

Well, academics at Dartmouth College in the US have been looking at this very issue, particularly in relation to navigational technologies. Lead researcher Professor Luis Alvarez León is in no doubt that decisions should not be left to vehicle manufacturers alone.

In his peer-reviewed article, Counter-Mapping the Spaces of Autonomous Driving, he said: “The race for automated navigation leads automakers to compete over the release of new technical features and new revenue streams, while paying secondary attention to the possible negative externalities for consumers.”

Bill Hanvey, CEO of the Auto Care Association, agrees. Writing in the New York Times, he said: “It is clear, because of its value – as high as $750bn by 2030 – carmakers have no incentive to release control of the data collected from our vehicles.

“Policymakers, however, have the opportunity to give drivers control – not just so that they can keep their data private but also so that they can share it with the people they want to see it.”

Closer to home, Fleet News reported on a KPMG survey showing that just 35% of UK automotive executives expect the driver to have data ownership. So, two thirds expect their companies to take care of it?

From the use of facial recognition software, to insights gathered from voice commands, we need to talk more about personal data in relation to connected cars.

Tackling driverless car cybersecurity threats: prevention, detection and mitigation

84% of automotive professionals have concerns that their organisational cybersecurity practices are failing to keep pace with evolving technologies, according to a new report by the Society of Automotive Engineers (SAE).

This is a major worry, and something of a disappointment, given it is nearly four years since the notorious Wired video in which hackers Charlie Miller and Chris Valasek remotely seized control of a Jeep Cherokee containing journalist Andy Greenberg:

Wired video: hackers Charlie Miller and Chris Valasek remotely seize control of a Jeep

“Seriously, it’s fucking dangerous,” he protested as they killed the engine while he was driving on a US highway.

These days, of course, there are millions more internet enabled ‘connected cars’ potentially susceptible to such attacks.

Despite this, the International Organization for Standardization (ISO) rules on cybersecurity engineering in relation to road vehicles are still “under development”.

Last year, the Cyber Security Body Of Knowledge (CyBOK) proposed a three-stage approach to tackling the issue: 1) Prevention; 2) Detection; and 3) Mitigation.

However, it warned: “Even with good techniques to prevent introduction of vulnerabilities in new code, or to detect vulnerabilities in existing code, there is bound to be a substantial amount of legacy code with vulnerabilities in active use for the foreseeable future.”

Just this month, Jaguar Land Rover suggested that fully driverless cars might need a billion lines of code, meaning a lot of scope for loopholes.

The good news is there’s a massive profit incentive for anyone coming up with a robust solution, so tech giants, vehicle manufacturers and start-ups are all on the case.

For example, the Innovate UK-funded 5StarS project brings together experts from Horiba Mira, Ricardo, Roke, Axillium and Thatcham.

Richard Billyeald, chief technical officer at Thatcham, said: “The 5StarS consortium aims to introduce a new system of star ratings for the security of autonomous cars against cyber-attacks, like Euro NCAP’s ratings for the crash safety of cars.”

Win for Wi-Fi over 5G in connected car technology race

In a controversial move, the European Commission (EC) has backed Wi-Fi-based ITS-G5 over its 5G-based rival, C-V2X, in the race to become the standard for internet connected cars.

The clincher was apparently that Wi-Fi is already widely available, but many see it as a victory for ITS-G5 supporters Volkswagen, Renault and NXP, who claim it is better for time-critical communications such as crash avoidance.

In the opposite corner, big hitters like Ford, Daimler, Deutsche Telekom and Huawei back C-V2X, arguing that it can support a wider range of applications.

The US and China are both expected to endorse 5G and driverless car cybersecurity is very much in the spotlight.

According to Techradar, Mats Granryd, director general of the GSMA (the trade association for mobile network operators), wrote to the European Parliament criticising Wi-Fi as old technology.

Meanwhile, Reuters quoted Lise Fuhr, director general of telecoms lobbying group ETNO, as saying: “Europe cannot mandate only one technology for connected driving. Member states can now correct this by bringing 4G and 5G back into the picture: global competitiveness and safety are at stake.”

The EC legislation still requires approval in the European Council, so the victory for Wi-Fi isn’t assured yet.