FocalPoint’s automotive Global Navigation Satellite System (GNSS) tech for ADAS and self-driving

European Space Agency supports FocalPoint in pioneering London automotive GNSS project

Supported by the European Space Agency (ESA), FocalPoint has developed a new Global Navigation Satellite System (GNSS) receiver to demonstrate its S-GNSS Auto software.

Last year we covered how the Cambridge-based company’s S-GNSS Auto solution helps to improve positioning accuracy in urban environments, as well as being more resilient to radio frequency (RF) spoofing attacks – with clear benefits for self-driving. Now, thanks to ESA’s Navigation Innovation and Support Programme (NAVISP), it can evidence this in real-time.

Gonzalo Martin de Mercado, NAVISP Element 2 Manager at ESA, said: “We are very proud to have supported FocalPoint in developing their S-GNSS receiver. We are confident this technology will have significant growth potential in Advanced Driver Assistance Systems (ADAS), and even in consumer markets like smartphones and wearables.”

GNSS for self-driving

Cars of the Future spoke to FocalPoint CEO, Scott Pomerantz, and VP of Business Development, Manuel del Castillo, to find out more…

Automotive GNSS expert and CEO of FocalPoint, Scott Pomerantz
Automotive GNSS expert and CEO of FocalPoint, Scott Pomerantz

SP: “ESA’s NAVISP is a key enabler for innovation in the European positioning, navigation and timing (PNT) landscape. This newly developed receiver will support our commercialisation strategy, underpinning IP development and providing that much-needed proof of impact.

“Being able to rely on the accuracy of GNSS is key for ADAS and automated driving systems. Our Supercorrelation technology has already won multiple awards, including the Business Innovation Award from the Institute of Physics in 2023.

“By determining the arrival angle of satellite signals, permitting only the line-of-sight signals and ignoring reflections, it will help reduce the number of accidents worldwide. All the major automotive manufacturers are interested.”

VP of Business Development at FocalPoint, Manuel del Castillo
VP of Business Development at FocalPoint, Manuel del Castillo

MdC: “Applying for ESA NAVISP support and funding proved to be extremely successful for FocalPoint. The project ran for two years. We hit milestones throughout the period, and we have just submitted our final paper and made our closing presentation.

“The main goal was to develop our own software defined receiver to prove the commercial implementation of our S-GNSS software – our patented, chip-set level technology which enhances the positioning performance of a consumer-grade GNSS receiver.

“Our Supercorrelation technology has several functions in the GNSS receivers for the automotive autonomy industry. GNSS’s core function is to provide the essential cross-checking of the accuracy and reliability of the sensors, cameras and radars, which can become very challenging, particularly in urban areas.

“As the only sensor capable of determining the vehicle’s absolute position anywhere on earth, as well as the sensor typically used to discipline inertial sensors, enhancing the reliability of the GNSS receiver itself is a logical first step to help overcome the typical challenges facing today’s traditional GNSS receivers.

“Needless to say, in the automotive sector we want GNSS to be accurate to the lane at least, but often that doesn’t happen without our technology. Across many routes in inner city  London, around Canary Wharf, where there are lots of very tall buildings, and therefore a huge number of reflections, in testing without Supercorrelation, many times the positions computed were on the pavement or even inside buildings.

“The first baseline of performance for our tests was a dual frequency L1 and L5 commercial receiver, which represents the state-of-the-art. The second baseline was our own GNSS software defined radio (SDR) without Supercorrelation. When applying Supercorrelation, the results were always within the correct lane, clearly demonstrating a level of accuracy that’s essential for advancing ADAS functionality.

FocalPoint test results: true trajectory (green) versus results with S-GNSS (blue) and without (red).
FocalPoint testing: true trajectory (green) versus results with S-GNSS (blue) and without (red).

“Another core benefit we have been able to demonstrate is the enhanced urban accuracy irrespective of the quality of the antenna used. We can compute very accurate positions even with lower quality antennas.

“In many new cars the manufacturers try to embed the antennas for aesthetic reasons, which unfortunately can compromise the performance. The enhancement of Supercorrelation facilitates a sensitivity boost in the GNSS receiver.

Resistance to spoofing

“Finally, for advancing ADAS and self-driving vehicles, it is critical that the GPS is resistant to spoofing attacks, so rejecting those is the third major benefit that the addition of Supercorrelation brings to the chip.

“We’re now discussing a phase two with ESA to further develop new Supercorrelation technologies, including its application to Real Time Kinematic (RTK) and Precise Point Positioning (PPP) GNSS correction services. Early research has shown dramatic improvement of these services, but with ESA’s backing, we will bring these to market even sooner.

“The aspect of resistance to spoofing attacks could be hugely valuable as all cars from a given manufacturer could be constantly monitoring the environment and sharing this data between them, a crowdsourcing effort to increase the reliability of GNSS for automotive.”

Resistance to spoofing increases the reliability of GNSS.
Resistance to spoofing increases the reliability of GNSS.

SP: “You covered our strategic investment from General Motors last year and we will definitely be doing more testing in London because that’s interesting for many car manufacturers, particularly JLR. We’ve been testing in Seoul, in a place renowned for its modern skyscrapers and office buildings – an area critical to Seoul’s urban landscape called Teheran-ro in Gangnam, a challenging landscape that is local to Hyundai and Kia.

“We’ve also been testing in Tokyo’s skyscraper landscape, results that will be of interest for brands including Suzuki, Subaru, Nissan and Toyota, and also in Frankfurt and the Black Forest for brands including BMW, Mercedes and Audi. Of course we’ll keep testing in Michigan and San Francisco, home of US automotive OEMs. It is all commercially driven, to prove that we can overcome the challenges associated with GNSS for these manufacturers in their own test environments.

“Open sky is relatively easy, but the minute you move into urban areas, motorways with big barriers, or roads with deep foliage, you can often find yourself with reduced GPS accuracy. Similarly, if, say L1 were spoofed and the network went down, and you didn’t have an L5 acquisition capability, that could be a problem, so we need to be multi-band.

“The whole spoofing and jamming piece has been getting a lot of press and our three buzzwords are mitigation, identification and localization. This will be a theme for every car maker – to establish whether there was an error on their side that requires correcting, or whether it truly was due to a bad actor. In the case of the latter, how did that play out and what are the liabilities? FocalPoint provides the fundamental data.”

Pro-Moto’s Smith on PAVE UK, self-driving skills and consumer education.

Technical training for safe self-driving: Pro-Moto

Partners for Automated Vehicle Education (PAVE) started in America, bringing together industry, non-profits and academics to engage with the public on self-driving.

Robotaxi fleets are already operating there, and the recently passed AV Act means they could be here in just a couple of years. Hence the launch of PAVE UK at the Royal Automobile Club in London.

Skills expert Eliot Smith, of Pro-Moto, talks self-driving
Skills expert Eliot Smith, of Pro-Moto, talks self-driving

Among those in attendance was Eliot Smith, director of Hampshire-based automotive training provider Pro-Moto Europe, so we asked him for his informed opinion on the technical skills required to deliver safe self-driving…

What motivated you to attend the launch of PAVE UK?

We got an invite via our customer Silvera Automotive, who are very into electric vehicles (EVs) and automated driving. Given that we specialise in hybrid and EV training, we know it is better to be involved at the start when it comes to such qualifications, to be able to influence the standards and technical aspects.

There’s no doubt that smart transport can bring significant societal benefits, but AVs face a real challenge in terms of public perception. We think it’s important to offer an informed opinion on what path self-driving training should take – to put our business in the driving seat, and to promote the value of those qualifications to technicians and employers.

You got to hear from a host of self-driving luminaries – what did you think?

The burning question I had, which I didn’t get a chance to ask, was: Given how the UK has struggled to accept or adopt EVs – after 20 years consumers still have questions about how to charge, where to charge, anxiety about range and so forth – how are we going to educate consumers about the advantages of AVs?

We’ve seen it time and again in automotive, on ABS, airbags, petrol injection, the consumer is always the last to be made aware. They’re left with doubts and nervousness, when all this could and should have been solved quite easily.

When the iPhone launched, everyone got it. The way it was marketed, consumers could see the benefits. It was a sea change and got accepted straightaway. Compare that to EVs. I worry we may end up in the same place with AVs. We need investment to educate people.

What about the practicalities of AV maintenance and repair?

A lot of the tech – brakes, suspension and steering components, in-cabin stuff – will be the same as existing vehicles, so that shouldn’t be a barrier. We will probably need common access, like we have with OBDII.

Once we understand what standards are required in the design, production, service and repair of AVs, the IMI or National Occupational Standards can decide whether we can map across current qualifications, or whether we need a new set. That’s the starting point.

Pro-Moto would like to sit on the expert working group, as we did with EV, to be part of the development and evolution of AV qualifications. These will help to educate not only the industry but consumers as well.

There will come a time soon when the AV will alert the service centre to a maintenance need, the necessary parts will be pre-ordered, and it will be a seamless transition all the way through.

Please note: a version of this article was first published in the Institute of the Motor Industry’s MotorPro magazine.

Survey reveals consumer self-driving concerns amidst GPS spoofing threat

Focal Point aims to boost self-driving trust by thwarting GPS spoofing

According to a new survey conducted by YouGov on behalf of Global Navigation Satellite System (GNSS) specialist Focal Point Positioning, 48.9% of consumers still believe self-driving cars will make our roads more dangerous.

Key concerns, the Cambridge-based company found, relate to the reliability of the technology, liability for accidents, vulnerability to cyberattack, and potential subscription costs. Of particular interest to Focal Point was the threat of GPS spoofing, which it says is on the rise.

Self-driving safety threat

Spoofing is a form of cyberattack that targets positioning systems such as GPS, with spoofers broadcasting fake signals to confuse the GNSS receiver, potentially interfering with vehicle navigation, ADAS and automated driving systems.

Manuel Del Castillo, VP of Business Development at Focal Point, has over 20 years’ experience in the GNSS industry, having previously worked for semiconductor manufacturer Broadcom.

Manuel Del Castillo, VP of Business Development at Focal Point
Manuel Del Castillo, VP of Business Development at Focal Point

“Our S-GNSS Auto solution is a software upgrade to the existing GNSS sensor in the car,” he said. “GNSS sensors are a marvel of engineering, able to compute an absolute position – latitude, longitude and altitude – anywhere in the world. However, they can suffer from accuracy problems in urban environments due to all the reflections off buildings, and they can also be subjected to RF cyberattacks, known as spoofing.

“Spoofers send malicious signals pretending to be the satellite signals, which can expose the naive design of some GNSS sensors. To combat this, our S-GNSS Auto software can run in the GNSS chips of any of the major chipmakers in the automotive industry, to generate a ‘trust zone’ around the GPS sensor.

“It can also be useful in improving the performance of suboptimal antennas, which vehicle manufacturers sometimes use because they are easier to conceal and don’t interfere so much with the design, for instance, those embedded in windscreens.

“We already have strategic investment from General Motors and are in discussion with manufacturers in Europe and the US.”

The full survey report is available via focalpointpositioning.com

Malcolm Wilkinson, Head of Connected and Automated Vehicles (CAVs) and Energy at National Highways, talks future mobility.

National Highways: Making CAVs Work For The UK

Malcolm Wilkinson, Head of Connected and Automated Vehicles (CAVs) and Energy at National Highways, on intelligent infrastructure, freight platooning, hands-free zones and more…

National Highways has completed several major CAV studies recently – what are the most significant findings?

MW: “Our connected corridor project on the A2/M2 was very successful, certainly an important steppingstone. It was a joint project with Kent County Council (KCC), Transport for London (TfL), the Department for Transport (DfT) and others. We demonstrated that cellular and WiFi connectivity can be used to put highway information into vehicles, for example, signage, warnings and green lights. We also demonstrated that data can transfer the other way – to us from vehicles. The project informed our Digital Roads vision and Connected Services roadmap, influencing elements of our Digital for Customer programme.

“The Connected and Autonomous Vehicles: Infrastructure Appraisal Readiness (CAVIAR) project used both simulations and real-world data collection. The number one recommendation was the need for further study to determine how CAVs can best navigate roadworks – that’s the next step. This potentially includes infrastructure-based solutions, such as smart traffic cones, and OEMs developing ‘cautious’ behaviours, to be triggered once a CAV enters a work zone.

“The HelmUK freight platooning trial, that we led, working closely with DfT, was another really valuable exercise. We demonstrated real-world use of platooning on the M5/M6, although the fuel savings were very modest, and didn’t replicate what we were seeing on the test tracks. This was largely due to the geography and the need to break up the platoon at many of the junctions.

“We recognise the challenges with rolling out something like this, even the difficulties in ensuring that vehicles from different logistics companies – from the large suppliers to two-lorry outfits – were travelling at the same time. It is one of those technologies you can see working brilliantly on long outback roads in Australia, but the advantages of putting it into every cab in the UK are far less obvious. It’s important to learn from initiative like the ENSEMBLE multi-brand truck platooning project in Europe.”

What are the most pressing CAV issues facing National Highways?

MW: “My feeling is that car manufacturers aren’t going to want to develop completely different models for the UK market, so we need to understand our role as a highway authority. What do we need to think about in terms of highway designs, data/information provision and maintenance standards? What do we need to be investigating and researching to make sure that we as the highway authority are playing our part, doing what motor manufacturers and the public expect of us?

“There’s been a lot of talk about the need for the white lines to be readable by automated vehicles. Is that still the case? If so, what does that mean for our maintenance schedules? Can we use the data from vehicles to inform our congestion management? Is there data we can use for asset management purposes?

“It’s understanding what we need to put into the equation and what we’re going to get back out. Particularly over the next few years, with a mixed fleet with different levels of autonomy, that’s going to present new scenarios, new risks. As a highway authority we need to be conscious of those – how they’re going to affect our operations and the safety of the travelling public.”

How did you identify which parts of the network could be hands-free blue zones?

MW: “The Centre for Connected and Autonomous Vehicles (CCAV) and the Vehicle Certification Agency (VCA) led the discussions with Ford regarding authorisation of their technology on public roads. Although we liaise closely with both, we weren’t involved in the detailed discussions with Ford, but to be clear, BlueCruise is an advanced driver assistance system, so the driver has to remain alert and able to take back control.

“Going forward, we need to move closer to organisations developing these systems to understand when they are coming to market and in what numbers. That’s part of our role as a highway authority – to keep our customers safe and to inform our traffic officers, so everyone knows what to do in the event of an incident.

“We’re reaching out to Ford, to see what data they can they share with us and to develop a more collaborative relationship. It’s very exciting times. We want people to embrace CAV technology and enjoy the benefits.

“We’re some way off self-driving vehicles, but my personal view is that they will probably be available more quickly than many people think.”

Please note: a shorter version of this article was first published in the Institute of the Motor Industry’s MotorPro magazine.

Tom Leggett of Thatcham Research did an epic round of media interviews to explain what BlueCruise is – assisted driving – and isn’t – self-driving.

Not self-driving: Thatcham media marathon to clear up BlueCruise capability confusion

Few were expecting it, but 13 April 2023 will go down in British motoring history. It was the day Ford announced that the Department for Transport (DfT) had approved the use of its BlueCruise assisted driving system on parts of the UK motorway network, making hands-free legal for the first time.

Initially, only a select few gained the ability to go ‘hands off, eyes on’ – drivers of 2023 Ford Mustang Mach-E cars who activate a subscription. Even then, use is restricted to 2,300 miles of pre-mapped motorways in England, Scotland and Wales – the new ‘Blue Zones’. Be in no doubt though, this is momentous.

One foot in the future

“It’s not every day you can say you’ve placed one foot in the future,” said Martin Sander, General Manager at Ford in Europe. “BlueCruise becoming the first hands-free driving system of its kind to receive approval for use in a European country is a significant step forward for our industry.”

UK Transport Minister, Jesse Norman, agreed: “I am delighted that this country is once more at the forefront of innovation. The latest advanced driver assistance systems (ADAS) make driving smoother and easier, but they can also help make roads safer by reducing scope for driver error.”

One of the main themes at the recent Zenzic Connected and Automated Mobility (CAM) Innovators event was the need to do more to establish the UK as a global leader. This embracing of hands-free will be noted around the world.

Ford describes BlueCruise as Level 2 driver assistance, with Lisa Brankin, managing director of Ford in Britain, telling the BBC’s Today programme that, in the case of an accident, the driver will still be responsible as the technology is “not autonomous driving”.

Ford BlueCruise graphic, 2023
Ford BlueCruise graphic, 2023

BlueCruise combines intelligent adaptive cruise control and lane-centering with an in-cabin camera monitoring eye gaze and head position. If necessary, alerts in the instrument cluster and audible chimes will prompt the driver to return their eyes to the road.

Assisted not self-driving

Unfortunately, and rather predictably, much of the UK media again confused assisted driving and self-driving. The Guardian went with “First hands-free self-driving system approved for British motorways”, The Sun with “Huge car firm is launching the UK’s first-approved self-driving technology”.

Huge credit to Tom Leggett, vehicle technology specialist at Thatcham Research, for doing a marathon round of media interviews to explain what BlueCruise is – assisted driving– and what it isn’t – driverless or self-driving.

“The sudden introduction of this technology did catch the industry a little off-guard, as it was not anticipated that it would reach UK roads for another 18-months or maybe even two years,” he said.

“It has been approved by the Vehicle Certification Agency (VCA) under Article 39 for a new and innovative technology, albeit based on current technology. Basically, the VCA were convinced by evidence from Ford, and their own on-track and on-road testing, that BlueCruise is as safe as, and not fundamentally different to, existing assisted driving technologies.

“The key point to emphasise is that it is assisted driving. What makes it slightly different is that it permits the driver to take their hands off the steering wheel. However, the driver is always responsible for driving. Any input from the driver, such as braking or changing lane, and the system will essentially turn off.

“The hope is that the driver monitoring will make it even safer. It is a camera system which looks at the driver’s direction of gaze to ensure they’re concentrating on the road, not looking out of the window or checking their phone.

“At Thatcham Research, we believe direct driver monitoring will have a significant role in addressing drowsiness and distraction. Currently in the UK, about 25% of all accidents involve some sort of distraction.

“It is vital that drivers using BlueCruise are aware of their responsibilities, and we’ll also be very interested to understand how they feel about using it.”

Please note: a version of this article was first published in the Institute of the Motor Industry’s MotorPro magazine.

Related story: Barrister Alex Glassbrook says approval of hands-free driving is a radical development in UK motoring, and should be accompanied by effective official guidance, training and information to the public and affected organisations.

Motor law expert on hands-free – ‘hands off, eyes on’ – driving becoming legal in the UK.

Quiet regulation of a radical step: Barrister raises concerns about lack of guidance on hands-free driving

Alex Glassbrook, a barrister at Temple Garden Chambers, says that approval of hands-free driving is a radical development in UK motoring, and should be accompanied by effective official guidance, training and information to the public and affected organisations.

Where does the Ford hands-free announcement sit in the shift to self-driving in the UK?

AG: “The first question many of us asked was: Is this the first automated vehicle under the Automated and Electric Vehicles Act (AEVA) 2018? It appears that it’s not. First, because it hasn’t been listed under Section 1 of the Act by the Secretary of State for Transport. Second, because it seems not to fulfil the criterion of a system that does not need to be monitored by the driver, which is part of the legal definition under Section 1 and Section 8.

UK Government list of self-driving vehicles (3 May 2023)
UK Government list of self-driving vehicles (3 May 2023)

“So, what we’re looking at is a vehicle with advanced driver assistance, but not a driverless vehicle. Equally, what we’re looking at is something that does represent a culture change, because the driver is allowed to remove their hands from the steering wheel. It’s described as a ‘hands off, eyes on’ system, although this hasn’t prevented the media reporting it as a driverless system, which has implications for safety.”

What do you note about the roads which have been designated ‘Blue Zones’?

AG: “A Blue Zone seems to be the marketing name for an area in which this system can work. I’m not an engineer and I’ve not seen the technical details of the permission that has been given by government for this to operate. However, I note the description of the system as being limited to pre-mapped motorways.

“In a regulatory sense, there is broad symmetry between this and the e-scooter trials, in that they both appear to be based upon government permissions on a set of conditions and restricted to certain areas. But there are plenty of dissimilarities too. For example, that motorised scooters and mopeds (as e-scooters are classified) have been with us for over 100 years, whereas computer mapping technology is relatively new.

“What’s new about a ‘hands off, eyes on’ system is the relinquishing of physical control of steering by the human driver, which is a radical step. The technology itself is a progression of cruise control, which was introduced in the 1950s and came to prominence in the 1970s during the fuel crisis in the US. But relinquishing control of steering at motorway speeds is different – a profound step in both regulatory and practical terms.”

What needs to be considered now that hands-free driving is a legal reality in the UK?

AG: “Let’s begin with some historical context. Driver assistance systems have been accumulating for some time, but the legal standard for driving has not really altered since 1971. It was then that Lord Denning, in the case of Nettleship v Weston, set what can be summarised as the standard of the reasonably prudent human driver.

“It’s a largely objective test, and there are some exceptions, but since established it has never been substantially altered. That’s quite surprising because cruise control is now in such common use that you might have expected the standard of care to have been particularised in relation to it. Now we have a system that explicitly allows the driver to let go of the steering wheel while the car is in motion at motorway speeds. In the coming years, a court might face the question of what standard of attention is required of a driver using a ‘hands off’ system.

“For good reasons, namely the need to plan future laws, we have become very focused on fully driverless vehicles. That’s not a complete strategy, as it can mean that we’re looking to the horizon rather than at what is actually in front of us. To go back to the history for a moment, it took quite some time after the introduction of the motor car for The Highway Code to be introduced. The first edition was published in 1931, written guidance which many of us will have looked at.

“The Highway Code isn’t meant to be specialist guidance to industry, it’s meant to be comprehensible guidance to the public. Advanced driver assistance systems (ADAS) have been regulated ‘quietly’, mainly settled by negotiation at international level and then applied as industrial standards by national approval authorities. ‘Hands free’ driving seems too significant a step for that trend to continue without better official education about advanced driver assistance systems, and what they can and cannot be relied upon to do.”

So how does the guidance need to change?

AG: “The number of driver assistance systems has increased over time, and the quantity of such systems alone can be confusing. I saw an article recently on the most irritating modern vehicle features! Meanwhile, The Highway Code is still largely a text document, not very friendly to mobile devices, and there are plenty of situations it simply doesn’t deal with.

“At the moment, the guidance on driver assistance systems, rule 150, says in essence that those systems are only assistive, that you have to be careful while using them and not let your attention be distracted. Is that guidance too general, for a ‘hands off, eyes on’ system which allows the driver to take their hands off the wheel while driving a car on a motorway? Then there’s rule 160 – “Once moving you should… drive or ride with both hands on the wheel or handlebars where possible” – which will presumably need revision.

Hands-free but Highway Code says "both hands on the wheel" (3 May 2023)
Hands-free but Highway Code says “both hands on the wheel” (3 May 2023)

“We need to think practically about the information which people need to use these systems safely, and how best to communicate it. For example, a feature of this and other systems is that their announcement is often accompanied by explanatory YouTube videos. The Secretary of State for Transport has wide powers to provide guidance and road safety training and information, not only by the Highway Code, under sections 38 and 39 of the Road Traffic Act 1988. He is not limited to one means of providing that information.

“There’s also an argument that we focus too much upon the user of the system. Should road users around a vehicle be made aware that it might be being steered by a computer rather than a human?

“Others affected include those who enforce driving laws and who respond to road traffic collisions, particularly the police and National Highways officers. Then other public authorities, such as the judiciary, and businesses, such as driving instructors and insurance companies – those who form part of the wider motoring ecosystem. All of these people need to be aware.

“So, as well as the issue as to its content, I come back to the question of whether the Highway Code, coming up for its 100th birthday, and still a text document, represents the best or only available form of communication.”

Advanced, Automated and Electric Vehicle Law, 2023
Advanced, Automated and Electric Vehicle Law, 2023

The author of 2017’s “The Law of Driverless Cars: An Introduction” and co-author of 2019’s “A Practical Guide to the Law of Driverless Cars”, Alex Glassbrook’s new book “Advanced, Automated and Electric Vehicle Law” is available for pre-order now.

BlueCruise is good, but it’s not self-driving.

Bolt from the blue oval: hands-free Ford is UK 1st but NOT self-driving

Big news! The Department for Transport has approved the use of Ford’s BlueCruise assisted driving system on parts of the UK motorway network. Be in no doubt, this is momentous – the first time UK drivers will legally be able to take their hands off the wheel. But what does it mean for self-driving?

The scope

As we sit here today, only a select few have gained the ability to sometimes go hands-free – drivers of 2023 Ford Mustang Mach-E cars who activate a subscription. They can then use the “hands-off, eyes-on” tech on 2,300 miles of pre-mapped motorways in England, Scotland and Wales – the new ‘Blue Zones’.

UK motorway blue zones - April 2023
UK motorway blue zones – April 2023

The Ford video below explains how it works, with the voiceover saying: “BlueCruise combines with your intelligent adaptive cruise control and lane-centering systems, allowing you to take your hands off the steering wheel while it maintains cruising speed and keeps you in your current lane.

“An infrared camera monitors your eye gaze and head position to ensure that you’re paying due care and attention to the road ahead. If the system finds you’re not looking at the road it will notify you either with an alert message displayed in the instrument cluster or by sounding an audible chime to remind you to return your eyes to the road.

“If you do not react to the warnings the system will cancel, gently pump the brakes to get your attention and slow your vehicle down while maintaining steering control.”

Ford assisted driving video

The legalities

Last year the government seemed to be planning to class cars equipped with Automated Lane Keeping Systems (ALKS) as self-driving. That hasn’t happened, which is a very welcome shift.

The UK government’s website confirms: “At present, there are no self-driving vehicles listed for use in Great Britain”.

Ford itself describes BlueCruise as Level 2 driver assistance, and Transport Minister Jesse Norman made clear: “The latest advanced driver assistance systems make driving smoother and easier, but they can also help make roads safer.”

Jesse Norman, Minister of State in the Department for Transport
Jesse Norman, Minister of State in the Department for Transport

Lisa Brankin, managing director of Ford in Britain and Ireland, told the BBC‘s Today programme on Friday that, in the case of an accident, the driver will still be responsible as the technology is “not autonomous driving”.

The beeb also noted that other vehicle manufacturers offer similar systems – Tesla has Autopilot and Mercedes has Drive Pilot. Interestingly, the latter announced last year that it will accept legal responsibility for accidents caused by its system.

One of the main themes at the recent Zenzic Connected and Automated Mobility Innovators event was the need to do more to establish the UK as a global leader in CAM. This embracing of hands-free will be noted around the world.

Self-driving headlines

Unfortunately, and rather predictably, much of the UK media has again confused assisted driving and self-driving.

The Guardian went with the headline “First hands-free self-driving system approved for British motorways”.

The Sun went with “HANDS OFF Huge car firm is launching the UK’s first-approved self-driving technology”.

Various outlets, including ITV, even regurgitated the line from the press release that BlueCruise can operate up to 80mph. Not on UK roads presumably as that’s 10mph above the motorway speed limit!

Let’s be clear – this lack of clarity is dangerous. Lives are at stake and road safety should be paramount.

Eyes on the road

This Ford video shows a driver happily gazing out of the window and being warned to “watch the road”.

Ford hands-free video

As the All-Party Parliamentary Group on Connected and Automated Mobility stated in its red lines: “A statutory definition of self-driving must be established to distinguish this technology from assisted driving”.

The final word goes to Tom Leggett, of Thatcham, who emphasised: “For the first time ever drivers will be permitted to take their hands off the wheel. However, their eyes must remain on the road ahead. Crucially, the driver is not permitted to use their mobile, fall asleep or conduct any activity that takes attention away from the road.”

EV to ADAS, Tesla has revolutionised the car industry at lightning speed

Tesla: With EV no longer a USP, ADAS is the new battleground

What company springs to mind when you think cutting-edge auto tech? Same here. Tesla. At the recent FT Future of the Car Summit, Elon Musk reminisced about the first Roadster.

“There were no start-ups doing electric cars, and the big car companies had really no electric car programmes,” he said. “Unless we tried, they were not going to be created. It wasn’t from a standpoint of thinking, hey, here’s a super lucrative idea.”

EV all the way: Tesla line-up
EV all the way: Tesla car line-up

20 years later, Tesla is the world’s most valuable car brand, and it’s not even close. In June 2022, Statista valued it at US$75.9 billion, up from a mere 40-odd billion in 2020, and substantially more than second-placed Toyota and third-placed Mercedes-Benz put together.

From drivetrains to marketing, it has shredded the vehicle manufacturing rulebook, and continues to do so. Consider just some of the key developments over the last six months.

Tesla to Twitter

In March, Musk entered into a Twitter spat with US president Joe Biden, after the latter praised Ford for investing $11billion to build EVs, creating 11,000 jobs, and GM for investing $7billion, creating 4,000 jobs. He retorted: “Tesla has created over 50,000 US jobs building electric vehicles and is investing more than double GM and Ford combined.”

Research by StockApps confirmed that Tesla spends miles more on R&D than rival carmakers, around $3,000 per vehicle produced. While Electrek highlighted that Tesla spends nothing on advertising, relying “almost entirely on word-of-mouth”.

It wasn’t all plain sailing. A court in Germany ordered Tesla to buy back a Model 3 from a customer who likened the Full Self-Driving (FSD) package to “a drunk first-time driver”. With EV no longer a USP, ADAS is the new battleground.

In May, a judge in California ruled that the driver of a Tesla operating in Autopilot must stand trial for a crash that killed two people. A Model S reportedly ran a red light and hit a Honda Civic at 74 mph. It could mark the first felony prosecution against a driver using a partially automated driving system.

More negative press followed when it emerged that hundreds of Tesla owners had complained about “phantom braking”, with cars stopping suddenly for no apparent reason.

Then, in June, the US National Highway Traffic Safety Administration (NHTSA) published the first of its new monthly reports into crashes involving vehicles with ADAS. Tesla had the most, followed by Honda and Subaru.

Cue the headlines, “Tesla Autopilot and Other Driver-Assist Systems Linked to Hundreds of Crashes” in The New York Times, and “Teslas running Autopilot involved in 273 crashes reported since last year” in The Washington Post.

Importantly, the US Public Interest Research Group clarified that: “Teslas are connected to the internet and automatically report if the car was in Autopilot. Honda asks its drivers if they were using ADAS, so it relies on hard-to-verify personal accounts. Everyone else leaves it up to the police report.”

Tesla went on the offensive, quoting some eye-catching statistics: “In 2021, we recorded 0.22 crashes for every million miles driven in which drivers were using Autopilot technology. For drivers who were not using Autopilot technology, we recorded 0.77 crashes for every million miles driven. By comparison, NHTSA’s most recent data shows that in the United States there are 1.81 automobile crashes for every million miles driven.”

Its Impact Report also noted that, “In 2021, the global fleet of Tesla vehicles, energy storage and solar panels enabled its customers to avoid emitting 8.4 million metric tons of CO2e”, compared to an ICE vehicle with a real-world fuel economy of 24mpg. A timely reminder of the extent of its achievement.

That’s a whirlwind six months, and we haven’t even mentioned the Gigafactory in Texas, the Cybertruck SUV, the plans to launch a steering wheel free robotaxi by 2024, June’s new car price hikes, or the off-the-chart used values.

The fact is Tesla has revolutionised the global motor industry at lightning speed, and shows no signs of slowing. 

Please note: a version of this article was first published by the Institute of the Motor Industry’s MotorPro magazine.

Big self-driving hardware news as Tesla registers a new radar unit with the US Federal Communications Commission.

Does Tesla’s brave U-turn on radar signal a more sensible approach to self-driving?

Thanks to Angelos Lakrintis on the Linkedin Self Driving Cars group for alerting us to the news that Tesla is apparently doing a major U-turn and re-embracing radar.

The EV specialist famously stopped fitting radar to new cars in May last year, following years of protestations by CEO Elon Musk that self-driving could be best achieved with cameras and silicon neural nets alone.

Self-driving hardware

Last year, The New York Times reported: “Musk has repeatedly instructed the company’s Autopilot team, which works on self-driving car tech, to ditch radar and use only cameras instead.

“The reason for this approach, Musk said in October, is to focus the data that’s being presented to the car’s computer systems.

“Tesla’s camera-based “vision” self-driving tech “became so good,” Musk said, that adding radar data was actually giving the system more information than it needed.”

Musk on self-driving at FT Future of the Car Summit 2022
Musk on self-driving at FT Future of the Car Summit 2022

Indeed, he was still making the point at last month’s FT Future of the Car Summit 2022, saying: “Anyone who’s driven a car for any length of time, once you have some years of experience, the cognitive load on driving a car isn’t that high.

“You’re able to think about other things, listen to music, have a conversation and still drive safely. So, it’s not like matching everything a human does.

“It is matching enough of the silicon neural nets to at least be on a par with the biological neural nets to enable self-driving, and I think we’re quite close to achieving that.”

Well, a week is a long time in politics, they say, and on 7 June Tesla registered a new radar unit with the US Federal Communications Commission (FCC).

Radar for self-driving

It has been widely reported that senior Tesla engineers have long disagreed with Musk on radar, pressing home many of the points made by Clem Robertson, CEO of R4dar Technologies, in our very first Zenzic CAM Creator profile.

“Each technology has its shortcomings,” Robertson said. “GPS is no good in tunnels; the cost of 5G can be prohibitive and coverage is patchy; cameras aren’t much good over 100 metres or in the rain, lidar is susceptible to spoofing or misinterpretation; digital maps struggle with temporary road layouts – but together they create a more resilient system.

“Radar only communicates with itself, so it is cyber-resilient. It works in all weathers. It is reliable up to 250-300m and very good at measuring range and velocity, while the latest generation of radars are getting much better at differentiating between two things side-by-side.”

This latest development suggests that Tesla is now on-board with such thinking.

According to Drive Tesla Canada, the registration allows Tesla to sell vehicles with the new units installed in the US. It speculates that they could form part of the highly anticipated Hardware 4.0 (HW4).

“Tesla currently builds vehicles with HW 3.0, otherwise known as the Full Self-Driving (FSD) computer,” it notes. “It is believed that Tesla will introduce the next-generation computer with the launch of the Cybertruck.

Will Tesla Cybertruck have HW4 for self-driving?
Will Tesla Cybertruck have HW4 for self-driving?

“Whether Tesla will offer existing customers a free upgrade to the new computer, like it did after the introduction of HW3, remains to be seen.”

Given Tesla was previously such a strong advocate for binning radar, it will be interesting to see whether others also back away from the idea.

For instance, Auto Evolution reported in April that Michael Benisch, VP of Engineering at Toyota subsidiary Woven Planet, believes a camera-only approach is possible.

Perhaps tellingly, Toyota itself always remained committed to using multiple sensors, both lidar and radar, on all vehicles offered for sale.

Musk himself calls the motor industry “hyper competitive” and with all major vehicle manufacturers now embracing electric, Tesla’s old USP is no longer unique.

If this U-turn on radar is a sign of a maturing, perhaps more sensible Tesla, its rivals should probably be pleased and worried in equal measure. 

Trade tips: advanced driver assistance system repairs

Please note: a version of this article first appeared in the March/April 2019 issue of IMI Magazine and was written for a motor trade audience.

Strongly-worded manufacturer statements about fitting only original equipment (OE) parts on vehicles equipped with advanced driver assistance systems (ADAS) are common in America, and now they’ve crossed the pond.

First, Honda asserted that non-OE windscreens might cause ADAS malfunctions due to the front-facing camera not being able to aim properly. Then, last summer, General Motors (GM) warned US dealers against using aftermarket or reconditioned bumpers of all things.

To a certain extent, you can understand why they’re so protective. A recent IIHS study of GM vehicles in 23 US states found that models with auto-braking and forward-collision warning systems had 43% fewer front-to-rear crashes. It also found that 64% fewer injuries resulted from such collisions, compared to similar models without ADAS.

Closer to home, on 30 January this year, Mazda’s parts and accessories sales manager, Dave Elphick, spoke at Auto Windscreens’ Automotive Connecting Conference of only being able to guarantee ADAS if vehicles had the same parts as when they left the factory.

Alistair Carlton, technical manager at National Windscreens, agrees that the introduction of cameras and radar represents a massive change. “Until a few years ago, we in the glazing industry didn’t really deal with vehicle electrics, other than maybe a winder motor when repairing a smashed side window,” he says.

“Last year we served 30,000 ADAS customers and a third of our technicians are now ADAS-qualified. It is still a small percentage of our overall work, but it is growing fast and it won’t be long before all our technicians will need to be ADAS-qualified.

“There are two types of calibration: static and dynamic. Static requires a target board to be accurately positioned at ‘x’ point in front of the camera. The diagnostic tool asks the car if it can ‘see’ the target and, if so, make any necessary fine adjustments within the vehicle software. This needs to be carried out in workshop conditions with plenty of space, good level flooring and stable lighting.

“Dynamic calibration is more of a system check. Using a diagnostic tool, you place the car into calibration mode and go through a drive cycle, where an internal tick list is checked-off to complete the action. There are a small number of self-testing cameras which carry out the dynamic calibration themselves – maybe one day they’ll all be self-calibrating, but that’s a long way off.”

As to the VM statements, Carlton says: “We counter these claims in two ways: firstly, we only fit quality products – yes, there are inferior products out there but it would be a false economy for us to use them; secondly, we work to the standards of the VMs with the highest specifications and closest tolerances. We often find we have better kit and more expertise than the dealers. In some cases, they’re actually the customer.”

He’s spot on about needing knowledge. As Bosch points out: “The buyer of a base BMW 520SE can now opt for Driver Assistance Plus, Driver Assistance, ACC with StopGo, Night Vision, Parking Assistant or Parking Assistant Plus. Every combination of these systems will have a different sensor configuration and require a specific calibration routine.”

There’s also the small matter of finding the relevant sensor. For example, the adaptive cruise control (ACC) radar sensor on a Golf is a square device mounted below the grille. On a Passat, it’s behind the badge, where Mercedes also like to hide it. What’s more, independent garages are going to be seeing a lot more of these jobs, with JD Power’s 2018 UK Vehicle Dependability Study highlighting multiple ADAS bugs in newer premium cars.

Neil Hilton, head of business development at Hella, was on the Thatcham steering group which finalised the code of practice for glass replacement. “There would be merit in having something similar for other repairs,” he suggests. “ADAS is part of a natural progression towards fully autonomous vehicles. You see it on virtually every new vehicle now, from the largest to the smallest, the cheapest to the most expensive.

“Manufacturers are actively promoting the benefits of these systems and Ford showed the way with its sharp marketing campaign on how cameras and road sign recognition, along with speed-limiting software, can help ensure you never get a speeding ticket.

“Systems like lane departure, autonomous braking and blind-spot detection are increasingly fused together, so when you recalibrate one camera or radar you have to check the others too. Even something like changing a steering rack can affect the data line that acts as the control point for all systems across the car.

“It’s nearly six years since we launched our HGS tool and we pride ourselves on sharing information with the aftermarket. Surprisingly, there can still be a tendency among general repair workshops to think ‘this won’t affect us’, but ADAS is so widespread that our windscreen customers are now expanding into the 360-view calibration and radar.

“Block Exemption means parts must be of a reasonable standard and comparable quality. If a reset gives a satisfactory result then the system is calibrated. What’s important is to promote reputable garages – those who attend training and invest in the right equipment.”

Richard Billyeald, chief technical officer at Thatcham, has high praise for ADAS, describing it as a life-saver. “The constant influx of new systems makes it a fantastically interesting time to be involved in the industry, but we have to plan for it from a repair perspective 5-6 years down the line,” he says.

“Compare the original Tesla Model 3 to where they are now – more cameras, radar, lidar, ever more sophisticated sensors. Autonomous emergency braking (AEB) will be mandatory, but Euro NCAP is already driving it. The slope just keeps getting steeper in terms of complexity, and this means more potential for failures.

“We urge manufacturers to better support these technologies because there’s almost an information vacuum. The guidance needs to be clearer, more available and reasonable. Should you have to recalibrate after a minor scrape? The whole industry needs to align – to agree a considered approach which keeps costs under control while delivering safe repairs. We have a vibrant aftermarket in the UK and manufacturers who behave sensibly will get a reputational benefit.”

But haven’t we already had this argument – isn’t this what Right to Repair was all about? Some VMs apparently think ADAS could be key to reopening the debate.