Navtech Radar puts figures on the benefits of port automation including reduced operating expenses and labour costs

Navtech builds the business case for automation

Regular readers will recognise the name Navtech Radar from our recent update on Oxbotica. In May, the two Oxfordshire-based companies joined forces to launch Terran360, promoted as the world’s first all-weather radar localisation solution for industrial autonomous vehicles.

While self-driving cars await a legislative framework, this ground-breaking technology is already being deployed in off-road settings. Ports are a good example and Madelen Shepherd, Growth Marketing Manager at Navtech, sets out a strong business case.

MS: “Ports are complicated operations and automation can massively improve efficiency, so we’ve been doing some financial analysis on the quantification of value. The benefits fall into three main areas: 1) reduced operating expenses; 2) reduced labour requirements; and 3) productivity increases.”

According to Navtech’s research, benefits resulting from port automation include a 31% reduction in operating expenses, a 40% reduction in labour costs and a 21% increase in productivity.

Navtech on port automation
Automation at ports delivers significant cost savings

MS: “This kind of financial modelling is important for Navtech to demonstrate that our products are viable, but it also provides a compelling argument for automation in general.

“The findings are based on averages from multiple quotes, although there was quite a large range on the reduction in operating expenses, from around 25% up to 50%.

“Currently, only 3% of the world’s ports are automated, but the rate of growth is now exponential. Key drivers for this include the rise of megaships and increasing next day deliveries.

“About 80% of the world’s goods go through ports. There’s already time pressure on everything and the increasing global population equals ever increasing demand.  

“New ports are a massive investment. For example, the first phase of the Tuas project in Singapore, which will create the world’s largest container terminal, is nearly complete and has already cost $1.76bn. There are three more phases to come.

“Of course, any cost benefit analysis must also include risks. If you’re retrofitting an existing port, how much is installation going to disrupt operations? What about the social impact of job losses or a shift in employment profile? Are the new jobs higher paid or more secure? How much time and money would an infrastructure-free solution save in operational downtime during installation compared to an infrastructure dependent solution?

“Automation has created so-called ghost ports, which are largely human-free, so there are clear safety benefits. And with automation you get remote operation, so maybe one person can now operate two straddle carriers.

“Also, operating bulky vehicles like terminal tractors can require an additional member of staff to supervise the movement. By using technological solutions – installing sensors which act beyond human capabilities – that’s no longer necessary.

“Terran360, an infrastructure-free localisation solution, delivers a detailed 360-degree map made up of around 400 slices and uploads this to a cloud-based server. The vehicle drives down a route continually scanning all these different landmarks.

“We’re always looking for new partners in the shipping world and other industrial settings. This kind of radar is perfect for self-driving cars too, so that’s another exciting growth area.”

Inma Martinez, author of new book The Future of the Automotive Industry, on self-driving and connected cars

Street smart cars of the future will drive like a local and diagnose Alzheimer’s

Described by Time magazine as “One of the best talents in human digital behaviour”, Inma Martinez advises business leaders and governments (including the UK’s Department of Culture, Media and Sport) on AI and digitisation. She’s just written a book called The Future of the Automotive Industry, so obviously we had to ask her about driverless cars.

How did you come to specialise in automotive?

IM: “I first got involved in the auto industry in the early 2000s, when BMW recognised that they had to attract female drivers and buyers. We made a series of short films with directors including Ridley Scott and John Woo, starring Clive Owen as The Driver. Guy Ritchie’s had Madonna in it. In those days, I was working as a human factors scientist, looking at how humans use technology.

“Previously, I had been a telecoms engineer specialising in internet protocols. Then, because Nokia bought two of my start-ups, I landed in their innovations department. Together with Intel, we came to the realisation that telecommunications companies had to create alliances with auto manufacturers for vehicle to everything (V2X) and vehicle to infrastructure (V2I) communications.

“I worked for Volkswagen Group designing cars with AI and met Mark Gallagher and all the Formula One crowd. I thought: I have to write about the future of this industry, because in the next five to ten years it will not look anything like today – the massive influence of the Internet of Things (IoT) and AI, sustainability and the green economy. I wrote the book during the pandemic and it came out in June.”

Setting EVs aside, how do you view the autonomous side of things?

IM: “I love the topic, firstly because it needs so much definition. People interchange ‘autonomous’ with ‘self-driving’, but they’re separate things. Unfortunately, the media is not very sophisticated in talking about that.

“For me, it’s something that’s been happening for 15 or 20 years, initially because the industry was pressed to improve safety. You got level one autonomous features, like cruise control and parking assistance, making things easier and safer. Now we’re at level three, and no one understands what on earth is going on!

“I hate it when Tesla put out press releases claiming full self-driving. The PR houses are doing a disservice to the industry because they’re confusing people. I delved into this for the book and came up to the conclusion that we’re not going to see autonomous cars until the regulation is ready for them.

“The European Union put out a good first attempt to define self-driving in 2019, and Japan has changed a lot of its traffic laws to allow Honda to start putting level three cars on the road.

“This will only happen when the legal framework is defined. Otherwise, you have the massive legal issue of who’s at fault in a crash. There’s got to be an effort in the industry to help create these legal frameworks, and I don’t think it’s too complicated.

“The way I see it, we need to differentiate an autonomous car – a level five car which can do literally everything by itself – from self-driving cars which can drive and brake and accelerate and have situational awareness, but which can’t operate constantly by themselves and still need the driver to keep their eyes on the road.”

Proposed changes to the Highway Code talk of drivers not having to pay attention anymore. Is there a danger that regulators could jump the gun?

IM: “That is frightening. You can’t put vehicles on the road driving themselves with just computer vision, you need V2X, roadside units (RSUs), Vehicular Ad Hoc Networks (VANETs) – all the beacons that make roads smart. You need 5G infrastructure, so the car is actually guided by connectedness. This has to do with urban planning and smart cities, not with the automotive industry per se.

“The point is not just whether can we make cars autonomous, it is whether we can make them street smart. The way people drive is different in every country. In Rome, people brake all the time. In Kuala Lumpur, there are mopeds everywhere. So, the car of the future is going to have to be adaptive – the AI, computer vision, all the settings will be different depending on where it is.

“There’s a wonderful thesis that asks whether people are born street smart or whether they get it when they move to a big city. I began to think about autonomous cars driving around big urban centres – they’re going to have to get the pulse of how you drive in a certain city. We need to train the system to learn how to integrate itself.

“We’ve only just begun to consider what autonomous is, and we need to have a bold vision as to what it should be. In my view, we need to make cars smart, not just autonomous.”

What are the main risks in the shift to self-driving?

IM: “We need a legal framework. We need integration into the smart city infrastructure, including telecommunications. We also need definitions.

“Cars look fabulous at the Geneva Motor Show, but nobody talks about them in contexts. Should there be designated lanes for hands-free driving? How are we going to deal with a car parc that is not all digital, that still has a lot of older vehicles?

“Automotive is one of the hardest industries to create innovation because you have the pressure of safety, safety, safety at all costs. For example, nobody’s working on voice commands anymore because it turned out they were a distraction, a nuisance.”

Can you address the challenges specific to the UK?

IM: “Yes – your road network. In the UK you have a lot of 60mph rural roads where you can barely see what’s coming. I drive in Somerset and holy cow! It’s only because humans drive in such a super intuitive way that there aren’t more crashes.

“Perhaps it’s also because your driving test is so rigorous. I did my test at school in a small town in Pennsylvania. The police would make you drive around the car park and give you your licence. That was it.

“Then you have London, which is like no other city. It is a Dickensian city with 21st century vehicles running through it. It is a costly challenge to test smart road infrastructure without creating congestion. Where are the budgets going to come from?”

Anything else you’d like to mention?

IM: “I was speaking to a board member at Volkswagen recently and he said that one of the revelations of the pandemic was that it motivated people to own a car, rather than use public transport, for health and safety reasons, and a certain level of freedom and privacy. People have conversations when driving that they wouldn’t have on a train.

“It is also worth highlighting the prospect of the automotive industry partnering with healthcare companies on predictive medicine – keeping track of your vital biometrics to help detect serious diseases. If you’re going to be sitting in this highly technical environment for two hours a day, data such as the way you check your mirrors can reveal early symptoms of things like Alzheimer’s.

“Connected cars will add another layer of personal profiling and data authentication. Digital fingerprinting companies will be able to see that it’s me on my usual route, doing what I normally do. The cybersecurity will have to be very strong though. Imagine somebody hacking into the traffic management system of a future city – that’d be the ultimate hack.”

And on that very Italian Job note, our time is up. Inma Martinez’s book The Future of the Automotive Industry is out now, or visit inmamartinez.io

As accusations of slow progress fly, the UK self-driving industry is accelerating.

Has the driverless car revolution stalled? Not at Oxbotica

There’s a lot of talk about the shift to autonomous vehicles slowing. Indeed, the question “Why has the driverless car revolution stalled?” was posed in preparation for the upcoming Reuters Automotive 2021 event [at which yours truly is moderating the AV session – sorry, shameless plug!].

In the UK, a good barometer of such things is Oxford-based Oxbotica, and they’ve made several significant announcements recently.

Back in January, we reported on the Oxford University spin-out securing huge BP investment, with CEO, Ozgur Tohumcu, teasing “exciting deals in the pipeline”.

Shortly afterwards, Tohumcu struck a big deal himself, leaving to become MD of Automotive at Amazon Web Services. 

Oxbotica Co-founder and CTO, Professor Paul Newman, was lavish in his praise for ‘Ozo’, saying on LinkedIn: “A chunk of everything we do will always be because of what you made these past few years.”

One major goal was swiftly achieved: offering public AV passenger rides in the UK. Oxbotica was instrumental in this long-awaited milestone, providing the software for Project Endeavour’s well-publicised road trials in Birmingham and London.

Part-funded by the Centre for Connected and Autonomous Vehicles (CCAV), and delivered in partnership with Innovate UK, Project Endeavour applied BSI’s new safety case framework specification, PAS 1881:2020 Assuring the Safety of Automated Vehicle Trials and Testing.

Oxbotica therefore became the first company to have its safety case assessed against these stringent new requirements.

In Greenwich, six modified Ford Mondeos were deployed on a five-mile route to help transport planners and local authorities understand how autonomy can fill mobility gaps and play a role in the long-term sustainability of cities. 

Dr Graeme Smith, Senior Vice President (SVP) at Oxbotica and Director of Project Endeavour, said: “This is a one-of-a-kind research project that is allowing us to learn about the challenges of deploying autonomous vehicles in multiple cities across the UK – a key part of being able to deploy services safely and at scale.

“So far, it has been a real collaborative effort, bringing everyone into the discussion, from local authorities to road safety groups, transport providers and, most importantly, the general public.”

Not everyone was convinced, however. My London carried this barbed comment from local Stephen McKenna: “What’s the purpose it’s filling that we don’t already have?” Clearly, the industry still has work to do on the public perception front.

Impressive new products can only help and, in May, Oxbotica and Navtech Radar launched Terran360, “the world’s first all-weather radar localisation solution for industrial autonomous vehicles”.

This pioneering technology is apparently accurate to 10cm on any vehicle, in any environment, up to 75mph. It has been comprehensively tested in industrial settings, on roads, railways and for marine use.

Phil Avery, Managing Director at Navtech, said: “Thanks to decades of experience in delivering radar solutions for safety and mission critical applications, and together with Oxbotica’s world-leading autonomy software platform, Terran360 is trusted to answer the fundamental question for autonomous vehicles: “Where am I?”, everywhere, every time.”

If that weren’t enough, outside of the UK, Oxbotica has deepened its partnership with BP by running an AV trial at its Lingen refinery in Germany.

Described as “a world-first in the energy sector”, BP now aims to deploy its first AV for monitoring operations at the site by the end of the year. 

Morag Watson, SVP for digital science and engineering at BP, said: “This relationship is an important example of how BP is leveraging automation and digital technology that we believe can improve safety, increase efficiency and decrease carbon emissions in support of our net zero ambition.”

So much for AV progress stalling!

Cars of the Future editor Neil Kennett talks driverless cars, driver assistance systems, The Highway Code and more.

Explore the future of motoring with Neil Kennett on the Tech Uncorked podcast

In a wide-ranging interview, our editor Neil Kennett discusses driverless cars, driver assistance systems, proposed changes to The Highway Code, robotaxis, data privacy, the trolley problem, artificial intelligence, and the Smokey and The Bandit theme song, with Dean and Sarah Gratton on the Tech Uncorked podcast.

“I’ve been a motoring journalist for 20-odd-years and I’ve become increasingly obsessed with connected and autonomous vehicles, and very dissatisfied with the majority of national media coverage,” he said.

“As I saw it, driverless cars were presented as either goodies like Kitt from Knight Rider or baddies like The Terminator, and you didn’t really get beyond that, so I launched Carsofthefuture.co.uk to explore the issues in more depth.”

Check out this scenic 40-minute journey into the future of motoring, first broadcast on 6 June 2021.

Law Commission proposes user-in-charge – a new legal role reflecting the responsibilities of being less than a driver but more than a passenger.

Self-driving in the UK: The latest from the Law Commission’s Automated Vehicles Review

The Automated Vehicles Review at the Law Commission of England and Wales plays a pivotal role in in the UK government’s push to be at the forefront of the burgeoning global self-driving industry.

Since 2018, when the Centre for Connected and Autonomous Vehicles (CCAV) asked The Commission to undertake a far-reaching three-year review of the UK’s regulatory framework for automated vehicles, Jessica Uguccioni, the lead lawyer for the review, has been immersed in reforms to enable their safe and effective deployment.

Jessica Uguccioni FL
Jessica Uguccioni (front left) and others at the Gateway project in London, 2018.

Covering everything from private cars to public transport and mobility as a service (MAAS), the final report is due by the end of 2021, but a ton of evidence has already been collected, analysed and published.

Notably, in December 2020, The Commission unveiled a consultation setting out a comprehensive regulatory scheme for automated vehicles. The consultation closed in March 2021 and the outcomes are not yet public.

Two concepts are particularly striking: 1) a start-to-finish self-driving vehicle safety assurance scheme; and 2) a user-in-charge.

Under the proposals, when the vehicle is driving in automated mode the person in the driving seat is no longer a driver, but instead a ‘user-in-charge’ with responsibilities to take over driving following a transition demand, and for driver duties that do not relate to dynamic driving (like maintenance of the vehicle, or ensuring children are wearing seatbelts).

Importantly, the user-in-charge would not be criminally liable if an accident occurred while the vehicle was in self-driving mode. Transport Minister Rachel Maclean hailed the work as “leading the way on the regulation of this technology”.

JU: “Our analysis is still evolving, not just in terms of the framework we would like to see, but suggesting changes to existing legislation and identifying gaps.

“For passenger cars, there are two main routes to market: gradually adding driving automation features to consumer vehicles, which may be capable of self-driving for part of a journey but still rely on a human driver to complete a trip; and the ride hail model, with vehicles that can carry passengers or drive empty, and can complete trips while self-driving.

“The oversight needs to be very different, although there is some common ground. The safety assurance scheme applies regardless of the use case. But for cars which cannot complete a journey in self-driving mode, it is important to have a user in charge – a new legal role reflecting the responsibilities of being less than a driver but more than a passenger. On the other hand, fleet operators play a crucial supervisory role for automated vehicles that do not need a user-in-charge.

“There is a lot of unease over the safety of the transition process: human factors input is crucial to ensure the human can be brought back into the loop and take over driving in a safe manner. Circumstances (the ‘operational design domain’ or ODD) must also be taken into account. For example, being in a dedicated lane travelling at 10mph is a very different safety case to motorway driving.

“The SAE levels are helpful, but they don’t tell the whole story. The AV must be safe within its ODD, but any public place brings an amount of randomness. The AV therefore needs to be able to cope with a wide variety of situations. For example, pedestrian safety needs to be taken into consideration for ALKS on motorways – people shouldn’t be walking along or across motorways, but sometimes they are. We need to make sure that redistribution of risk does not disadvantage vulnerable road users – that’s a priority.”

For the latest thinking, see this Overview of Consultation Paper 3 and we await the final report with great interest.

Carsofthefuture.co.uk is media partner for event boasting most senior collection of technology, AV, EV and ADAS leaders ever seen.

Carsofthefuture.co.uk is media partner for Car of the Future 2021

Carsofthefuture.co.uk has signed a media partnership agreement with Reuters Events for the two-day Car of the Future 2021 online event in June.

Intended to drive vehicle change to create a safer and more sustainable world, the event boasts the most senior collection of technology, autonomous vehicles (AV), electric vehicle (EV) and advanced driver-assistance system (ADAS) leaders ever seen.

High profile speakers include: Michelle Avary, Head of Automotive and Autonomous Mobility at The World Economic Forum; Carla Gohin, Research & Innovation Senior Vice President at Stellantis; Henrik Green, Chief Technology Officer at Volvo Cars; Sajjad Khan, Member of the Board of Management at Mercedes-Benz AG; José Muñoz, Global Chief Operating Officer at Hyundai Motor Company; and Dr Ken Washington, Chief Technology Officer at Ford Motor Company.

Carsofthefuture.co.uk founder, Neil Kennett, said: “We’re delighted to be a media partner for this exciting Reuters event which fits perfectly with our mission to chart the development of, and encourage sensible debate about, driverless cars in the UK. Full self-driving is a way off yet but as ever more advanced driver assistance systems become available, notably Automated Lane Keeping (ALK), it is vital that the public understands where we are with the technology and what it can and can’t do.”

Car of the Future 2021 will take place on 14-15 June. See reutersevents.com 

Ahead of this, Reuters Events will host a free webinar, Connectivity: Smarter and Safer Vehicles, on 24 March. Confirmed speakers include: Michelle Avary; Szabi Patay, Head of Automotive at Commsignia; Prashant Tiwari, Director of Intelligent Connected Systems at Toyota North America; and Frank Weith, Director of Connected and Mobility Services at Volkswagen Group America. Register here.

#ReutersEventsAutomotive

IPG expert says simulations can be better than real world testing.

The road to self-driving: Vehicle Certification Agency urged to accept simulation

Our Zenzic CAM Creator series continues with Elliot Hemes and Will Snyder of IPG Automotive UK.

Chartered engineer and self-proclaimed simulation evangelist, Elliot Hemes, previously worked in global product marketing at Jaguar Land Rover (JLR), covering future automotive trends. Now managing director at IPG Automotive UK, he works with big-hitters including Ford and JLR to provide virtual test driving environments. Here, in discussion with IPG Automotive sales engineer Will Snyder, he explains how simulation will be vital for the shift to self-driving.

EH: “As vehicle systems become more complex and interconnected, we ensure that manufacturers can virtually test their systems in realistic traffic situations, using an approach that is quick and accurate.”

WS: “IPG Automotive started in vehicle dynamics, then advanced driver assistance (ADAS) was the next big thing, now it is autonomous vehicles (AVs). The amount of testing required to achieve true autonomy is impossible to do in the real world. I believe we will get to Level5 autonomy, but there are some big hurdles such as accounting for human drivers in other vehicles – it would be much easier if every vehicle on the road was autonomous and connected.”

EH: “We might see it first in a city environment, restricted to less than 20mph. People put up lots of reasons why full autonomy can’t happen, but a blanket statement of “it’s too hard” just isn’t good enough. You could say, for example, you can’t use the M6 Toll unless you have vehicle-to-vehicle (V2V) communications. That would enable platooning – if one vehicle brakes, they all know about it. 99% of the time, great brakes will get you out of trolley problem scenarios.”

WS: “You cannot say AVs will never crash. The question should be: are they safer than human drivers? And the answer is yes, they definitely will be. When people talk about ADAS deskilling drivers, my response is: what skills?! It is well proven that concentration is badly affected by holding a conversion with someone else in the car, let alone fiddling with the radio or holding a hands-free phone call. We all get defensive about our driving prowess, but it needs to be recognised that the bar for driving is very low. You don’t even learn how to drive on a motorway – that’s not part of the driving test, which is one reason you get so many middle lane sitters.”

EH: “At the moment none of the major vehicle manufacturers are taking the leap to level 4/5, partly because they’re worried about litigation. Once the legislation is in place you will see truck platooning very quickly because of the enormous cost savings. It will require vehicle-to-everything (V2X) and V2V communications. The current ADAS technology is great but the systems are very digital and can have issues with poor light and bad weather. It will improve over time.”

WS: “We could even skip Level 3 as it is safer to move straight to Level4. In my opinion, the driver needs to be either active or not – expecting them to retake control in time in an emergency situation is just not realistic.”

EH: “Over the next decade you will see the gradual adoption of ADAS technologies. Adaptive cruise control (ACC) will become standard and that will avert so many crashes, particularly rear-end shunts. It doesn’t take away from the driver, it just intervenes. However, there is a concern about the performance of these systems in low light conditions – we need much more focus on the edge cases.

“OEMs engineer to perfect Euro NCAP test conditions. In the real world, what happens if the sun is low in the sky, or the pedestrian steps out more quickly? You cannot practically test these kinds of things on a track, which is why you have simulations. You can study that edge case over and over. We’ve had customers ask us to recreate exactly the same environment as the test track, including noise that’s nothing to do with the question in hand. Our advice is not to try to simulate the real world – design the simulation to study exactly the question you want to answer.

“In this way simulation can be better than the real world. Say, for example, you want to test a pedestrian Autonomous Emergency Braking (AEB) function in the early stage of development. You just want to know if, in the CarMaker environment, it performs the right output – applying enough braking to stop before it hits the dummy pedestrian. The next step is to put that software into an ECU. You can do all that with hardware-in-the-loop testing, improving the capability step-by-step without building a prototype vehicle or driving billions of real-world miles.

“Further still, under heavy braking, the front camera might well point to the floor, maybe the car might start to drift. You can do all that in simulation, to prove that your algorithms hold up and the car does what you think it will do.”

WS: “Another problem with running prototype vehicles on test tracks is that you spend an awful lot of time fixing thousands of other small faults before you get on with what you’re supposed to be testing. We can get all these edge cases done before you get to the test track. By using simulations you get so much more out of the valuable test track time.”

EH: “The ‘systems engineering V’ has all the theoretical stuff on the left, then hardware on the right and validation at the top. Ideally we’ll get to the stage where only validation happens in the physical world. Until the homologation and certification authorities are able to accept simulation results you can’t do enough testing to get AVs on the road. That’s why it is such a vital part of the Zenzic CAM Roadmap.”

For further info, visit ipg-automotive.com

Autonomous vehicle software specialist set to become a major UK success story.

Oxbotica secures huge BP investment and targets anything that moves people or goods

Oxford University spin-out, Oxbotica, has been on our must-speak-to list for a while, and on Friday we got some Zoom time with the top people – CEO, Ozgur Tohumcu, and co-founder and CTO, Professor Paul Newman.

It’s three weeks since the autonomous vehicle software specialist announced a US$47m Series B investment led by bp ventures. Yes, that BP. The press release asserts that this will accelerate the deployment of Oxbotica’s platform “across multiple industries and key markets”, but Prof. Newman is quick to emphasise this is not about robotaxis, not even about cars.

Prof Paul Newman, Oxbotica co-founder and CTO.
Prof Paul Newman, Oxbotica co-founder and CTO.

“We’ve been deploying our software in industrial settings – mines, airports – for six years now, and not only in the UK, in Europe, North America, Australia,” he says. “Everyone talks about cars but all vehicles are game for us – anything that requires moving people or goods. That’s the advantage of being pure software.

“We’re a global business and raising this kind of money during a pandemic speaks volumes. We have clear water behind and blue sky ahead. Having these new investors and strategic partners will really allow us to drive home the opportunities that came last year. Vehicles are common but software of our standard is not. We’re showing that great IP can be generated everywhere, not just Silicon Valley, and that’s very refreshing.”

While Prof. Newman focuses on the vision, Tohumcu provides the detail. “Since the funding announcement, the exchange rate means it’s actually worth closer to $50m, so that’s not bad,” he says. “We’ve just conducted a review of the business and it was pleasing to see that we achieved exactly what we said we’d do two years ago – delivering results against measurable goals.

Ozgur Tohumcu, Oxbotica CEO.
Ozgur Tohumcu, Oxbotica CEO.

“We’ve done a lot of planning recently – some well-defined, other things we’re still making choices about. We’ve been approached by new companies interested in using our tech and there are exciting deals in the pipeline, deals that come with investment. We’ll be making further announcements over the coming weeks and months.”

Make no mistake, Oxbotica is set to become a major UK success story… just don’t mention driverless cars!

Influential designer sees an opportunity to rethink the whole UK transport system.

Designer Priestman questions carmakers and champions elegant public transport

Our Zenzic CAM Creator series continues with award-winning designer Paul Priestman, co-founder of PriestmanGoode

Famous for designing Virgin’s Pendolino train and the BT HomeHub, Paul Priestman is one of the UK’s 500 most influential people, according to The Sunday Times. Here, he describes three exciting connected and automated mobility concepts: 1) The Moving Platforms infrastructure network; 2) A modular electric car for autonomous network transit (ANT) company, Dromos; and 3) The Scooter for Life automated electric scooter.

PP: “I’ve always been interested in mass transit and its relationship with the city. Over 30 years, the company has grown and we’re now involved in all forms of transport, even space travel. We take ideas from one sector and transfer them to others.”

Moving Platforms

PP: “This was an idea that grabbed people’s attention: a tram that can move around a city, then go to the outskirts and join a high speed rail line, without stopping, and take you to another town or even country.

PriestmanGoode Moving Platforms animation

“First and last mile is the logjam. If you can crack that then people won’t need personal transport. The cost of private car ownership is astronomical – you have to park it, maintain it, it depreciates something rotten. But carsharing isn’t working yet because the cars themselves are not designed for it – they are designed to be personal.

“There’s an opportunity to rethink the whole system from purchase through leasing to shared ownership and public for hire models, alongside designing an interior which is appropriate for these variants of use. There are a number of disruptors in the market and just as we’ve seen other markets completely transformed through disruptors such as Uber or Amazon, so there’s an opportunity to look at the car industry in the same way.

“The car industry keeps forcing the same product on us, but the market wants change. For the majority of people, especially in cities, you can’t equate private car ownership with the open road, where you can do what you want, it’s just not realistic, but I understand that there are different needs for rural and urban dwellers.

“London is an example of a great public transport system, although most of our stations were designed 150 years ago and haven’t changed much. I use an app to see when the next bus is due and then walk up to the bus stop. The bus usually arrives on time and we fly down our own lane on the Euston Road, passing all the cars stuck in traffic.”

Dromos ANT

PP: “The system is important, not just the vehicle. It is elegant public transport designed around the passenger – the first autonomous system to deliver mass transit, and the infrastructure belongs to the city. The car we designed is half the width of a normal car, with space for two or three people, and it can be steam cleaned. It’s a personal vehicle which will come to you, wherever you are, and then join a dedicated track, becoming almost like a train, before peeling off to complete the journey.”

PriestmanGoode modular electric car for Dromos
PriestmanGoode modular electric car for Dromos

At this point, Priestman refers to our interview with the arch critic of driverless cars, Christian Wolmar. PP: “The problem with some self-driving concepts is you still get traffic jams full of cars with no one in them. A lot of that congestion is caused by delivery vehicles – every time you buy something online you’re causing a traffic jam. Once you have a vehicle which has a dedicated highway you’re free from other traffic and can travel faster and closer together.”

Scooter for Life

PP: “The Scooter for Life was a special commission for the New Old exhibition at the Design Museum. We gave it three wheels, so it doesn’t fall over, and a basket for your bag or dog. It’s electric and can also be automated, so there’s a take-me-home button. People immediately think of autonomous vehicles as being car-sized, but I think they might be smaller. The only reason cars were that size in the first place was to fit in the huge engine, which you no longer need.

PriestmanGoode Scooter for Life
PriestmanGoode Scooter for Life

“People taking the tube for only a stop or two really slow things down, whereas bikes, scooters and walking mean you see more of the city. It’s a bit reclaim the streets and reminds me of the Walklines we designed years ago. The Covid situation, terrible as it is, has shown us a less congested London –an increase in the use of bikes and walking, a city moving in a much healthier way. For me, that’s much more beautiful.”

For more on these designs, and a prototype Hyperloop passenger capsule, visit priestmangoode.com.

Stagecoach unveils UK’s first full-sized driverless bus

One of the UK’s leading transport operators, Stagecoach, is testing a full-sized autonomous bus at a depot in Manchester.

Working in partnership with vehicle manufacturer Alexander Dennis and technology company Fusion Processing, the first public demonstration was held on Monday 18 March.

Stagecoach chief executive, Martin Griffiths, said: “This is an exciting project to trial autonomous technology on a full-sized bus for the first time in the UK. 

“Our employees are the beating heart of our business and I believe that will remain the case, but the world is changing fast, particularly where new technology is involved.”

Stagecoach operates over 8,000 vehicles and employs 18,000 people in the UK.

Jim Hutchinson, CEO of Fusion Processing, added: “Our CAVstar sensor and control system has now been successfully applied to vehicles ranging in size from two-seater electric vehicles right up to a 43-seat bus.

“Our advanced driver-assistance systems already offer improved operational safety for buses and HGVs, and we anticipate further new ADAS products as spin offs from the autonomous vehicle (AV) bus project.”