Meet the maverick radar expert of UK drones and driverless
Welcome to a new series of interviews with our fellow Zenzic CAM Creators. First up, Clem Robertson, CEO of R4dar Technologies.
As a keen cyclist who built his own Cosworth-powered Quantum sportscar from scratch, it’s no surprise that the founder of Cambridge-based R4dar takes a unique approach to self-driving. Indeed, his involvement can be traced directly to one shocking experience: driving down a local country lane one night, he had a near miss with a cyclist with no lights. He vividly remembers how a car came the other way, illuminating the fortunate rider in silhouette and enabling an emergency stop. It proved to be a light bulb moment.
What does R4dar bring to connected and automated mobility (CAM)?
CR: “I’d been working in radar for five or six years, developing cutting edge radar for runways, when the incident with the cyclist got me thinking: Why could my cruise control radar not tell me something was there and, importantly, what it was? This kind of technology has been around for years – in World War II we needed to tell the difference between a Spitfire and a Messerschmitt. They placed a signal on the planes which gave this basic information, but things can be much more sophisticated these days. Modern fighter pilots use five different methods of identification before engaging a potential bogey, because one or more methods might not work and you can’t leave it to chance whether to blow someone out of the sky. The autonomous vehicle world is doing similar with lidar, radar, digital mapping etc. Each has its shortcomings – GPS is no good in tunnels; the cost of 5G can be prohibitive and coverage is patchy; cameras aren’t much good over 100 metres or in the rain, lidar is susceptible to spoofing or misinterpretation; digital maps struggle with temporary road layouts – but together they create a more resilient system.”
How will your solutions improve the performance of self-driving cars?
CR: “Radar only communicates with itself, so it is cyber-resilient, and our digital tags can be used on smart infrastructure as well as vehicles – everything from platooning lorries to digital high vis jackets, traffic lights to digital bike reflectors. They can tell you three things: I am this, I am here and my status is this. For example, I’m a traffic light up ahead and I’m going to turn red in 20 seconds. Radar works in all weathers. It is reliable up to 250-300m and very good at measuring range and velocity, while the latest generation of radars are getting much better at differentiating between two things side-by-side. We are working with CAM partners looking to use radar in active travel, to improve safety and traffic management, as well as with fleet and bus operators. We are also working with the unmanned aerial vehicle (UAV) industry to create constellations of beacons that are centimetre-accurate, so that delivery drones can land in a designated spot in the garden and not on the dog!”
What major developments do you expect over the next 10-15 years?
CR: “Fully autonomous vehicles that don’t carry passengers will come first. There are already little robots on the streets of Milton Keynes and, especially with Covid, you will see a big focus on autonomous last mile delivery – both UAVs and unmanned ground vehicle (UGVs). You never know, we might see delivery bots enacting a modern version of the computer game Paperboy. More and more people in urban areas with only roadside parking will realise that electric cars are tricky to charge, unless you put the chargers in the road, which is expensive. If you only need a car one or two days a month, or even for just a couple of hours, there will be mobility as a service (MAAS) solutions for that. Why would you bother with car ownership? E-scooters are one to keep an eye on – once they’re regulated they will be a useful and independent means of getting around without exercising. Town centres will change extensively once MAAS and CAM take off. There will be improved safety for vulnerable road users, more pedestrianisation, and you might see segmented use at certain times of day.”
Do you see any downsides in the shift to self-driving?
CR: “Yes! I love driving, manual gearboxes, the smell of petrol, the theatre, but you can see already that motorsport, even F1, is becoming a dinosaur in its present form. People are resistant to change and autonomous systems prompt visions of Terminator, but it is happening and there will be consequences. Mechanics are going to have less work and will have to retrain because electric motors have less moving parts. Courier and haulage driving jobs will go. Warehouses will be increasingly automated. MAAS will mean less people owning their own cars and automotive manufacturers will have to adapt to selling less vehicles – it’s a massive cliff and it’s coming at them much faster than they thought – that’s why they’re all scrambling to become autonomous EV manufacturers, it’s a matter of survival.”
So, to sum up….
CR: “Fully autonomous, go-anywhere vehicles are presented as the utopia, but there’s a realisation that this is a difficult goal, or at least a first world problem. There might always be a market for manned vehicles in more remote locations. A lot of the companies in this industry specialise in data, edge processing and enhanced geospatial awareness, and that will bring all kinds of benefits. How often have you driven in fog unable to see 10m in front of you? Self-driving technology will address that and many other dangers.”
Hearing bold predictions like these from a petrolhead like Clem, suddenly Zenzic’s ambitious 10-year plan seems eminently achievable.
For further info, visit the R4dar website.