Given how quickly they’ve revolutionised the motor industry, who’s to say Tesla won’t also win the race to driverless?

Fully autonomous by 2023? Tesla leads the charge to self-driving cars

2020 has been an epic year for Tesla. While virtually every other vehicle manufacturer continues to build petrol, diesel and hybrid cars, Elon Musk’s commitment to pure electric has paid off handsomely.

Back in February, the Model 3 was named UK Car of the Year. By July, a share price surge had made Tesla the world’s most valuable car company, worth a staggering $208bn, overtaking Toyota (on $203bn) and miles ahead of Volkswagen ($74bn), General Motors ($36bn) and Ford ($24bn).

Since 2016, with the introduction of the Autopilot Hardware 2 package, Tesla has made ever bolder claims about full self-driving. “It’s almost getting to a point where I can go from my house to work with no interventions,” boasted Musk this summer.

Such remarks have drawn stinging criticism. “Tesla has repeatedly rolled out crude beta features, some of which can put people’s safety at risk and shouldn’t be used anywhere but on a private test track,” said William Wallace, manager of safety policy for Washington-based Consumer Reports. 

Not so long ago, rival carmakers were similarly dismissive of battery power. What they’d give to be as desirable as Tesla now!  

Last week, as part of his 2020 annual shareholder meeting (and much-publicised #BatteryDay), Musk laid down an ambitious new marker: “I think probably like in about three years from now, we’re confident we can make a very competent, very compelling $25,000 electric vehicle that’s also fully autonomous,” he said.

Given how quickly they’ve revolutionised the industry, who’s to say Tesla won’t also win the race to driverless?

Space age navigation for driverless cars

In a fascinating new article, published on 18 September 2020, NASA explained how its laser-based lunar landing technology could be adopted by self-driving cars.

Facing many of the same navigational and hazard avoidance challenges, NASA brought sensors, cameras, algorithms and high-performance computers together under the Safe and Precise Landing Integrated Capabilities Evolution (SPLICE) project.

Considering Mars is approximately 34 million miles from earth, and NASA successfully landed the Curiosity rover within a 12×4 mile target area, autonomous vehicle developers would be wise to pay attention.

What’s more, NASA intends to be even more precise in future, with a new variation called Navigation Doppler Lidar (NDL), which detects the movement and velocity of distant objects, as well as a spacecraft’s own motion relative to the ground.

Steve Sandford, former director at NASA’s Langley Research Center and now Chief Technology Officer at Psionic, said: “Doppler lidar’s high resolution can distinguish between objects that are only several inches apart and even at a distance of several hundred feet.” Potentially perfect for detecting, for instance, a pedestrian crossing a road.

For further info, read the original NASA article.