Tim Dawkins explains why the UK is so well placed to develop self-driving vehicle technologies and regulations.

World Economic Forum: UK provides leadership on autonomous mobility

With its laudable aim “to demonstrate entrepreneurship in the global public interest while upholding the highest standards of governance”, transformational technologies like autonomous vehicles are natural territory for The World Economic Forum. Here, we get the considered views of the Forum’s Automotive & Autonomous Mobility Lead, Tim Dawkins – an Englishman working for the Geneva-based organisation in sunny California.

Tim Dawkins
Tim Dawkins leads a portfolio of automotive and autonomous mobility policy research activities.

Tell us about your path to autonomous vehicles and The World Economic Forum

TD: “I started out studying motorsport engineering at Brunel and my first job out of university was in vehicle security for automotive consulting firm, SBD, helping manufacturers meet Type Approval requirements with anti-theft technologies. When SBD opened an office in North America, I went there, to lead their consulting in autonomous driving. Then, in 2018, I got my MBA and wound-up joining The World Economic Forum.

“Here at the Forum, our mission is greater than to convene events for business leaders, but actually to improve the state of the world. In my domain, that means making sure that the future of transportation is as safe as possible. Broadly, we work with governments and industry leaders to help them understand each other better. In the world of autonomous vehicles that means helping governments understand how the technology is evolving and the creation of new governance structures – which can be used in regulations, standards and assessment criteria.

“A crude analogy is to think about a driving test for the self-driving cars of the future – what does that look like? It’s obviously a lot more nuanced and complex than that, but by being a neutral entity – bringing together the likes of Aurora and Cruise with leading academics and regulators to have focused discussions around autonomous vehicle operation and deployment, or what it means to define a safe autonomous vehicle – is a very effective way of achieving better outcomes for all.

“It’s not just about the advanced technologies of the future, our portfolio also includes road safety research – improving the infrastructure, reducing crashes and fatalities with today’s ADAS technologies, and looking ahead to creating a safer future of mobility with autonomous vehicles.”

With your global perspective on autonomous mobility, how is the UK doing in terms of the government’s stated aim of being “at the forefront of this change”?

TD: “The automotive industry has always been very important to the UK economy, so it is natural that that industry and the government agree on the strategic priority to make the UK an attractive place to develop and test these technologies. We have world-leading engineering talent, universities and research and test facilities within our borders, so it’s shifting the focus from sheet metal and engines over to Connected and Autonomous Vehicle (CAV) technologies. Really, it’s a great fit.

“What UK governments have done – I say governments plural, because this has been going on for over 10 years – is to create institutions which spur development. There’s been dedicated funding and research grants not only to grow the CAV ecosystem within the UK, but to encourage international organisations to come and develop in the UK as well.

“What we see now is the result of many years of building the business case, to position the UK as a competitive place to test and develop new technologies. This top-down industrial policy, combined with an open code of practice to facilitate automated vehicle trialling, make the UK a great place to test and develop AVs.

“This ecosystem view is something we study here at the Forum. We recently published a joint paper with The Autonomous – The AV Governance Ecosystem: A Guide for Decision-Makers – which looks at how the standards bodies, alliances and consortia are coming together to develop solutions which will become policy, or at least be used in future governance. You will notice that a lot of UK entities feature very prominently in this study.

“For example, BSI are one of the long-established standards institutions that have been mission-aligned to further CAV mobility, by delivering technical standards and guidance to address governance gaps in the sector, such as the new Publicly Available Specification (PAS) 1881, 1882 and 1883 documents and a vocabulary of CAV terms. Then you have entities such as Zenzic to create the business environment and inform the overall roadmap to making autonomous vehicles a reality, supported by entities such as Innovate UK, and a whole ecosystem of universities and research entities creating a thriving network for innovation.

Please could you comment on the transformative potential of AVs to be, as the WEF’s Mouchka Heller put it, “a necessary first step towards building a better, more equitable and healthier world”?

TD: “One of the things our team like to tackle is how to incentivise these companies to go not just where they can make the most profit, but to provide services to those who most need transportation. This means providing services in areas that are underserved by public transport.

“Think about commuting into London – you drive to the train station, then get onto the TFL network. If you can make that journey more efficient, hopefully more affordable, and accessible, suddenly the economic opportunities that come with commuting into London are open to a greater swathe of people. It’s a very local issue. You have to look at each city and say: where are the areas with the least economic opportunities and how can mobility provide them with greater access to jobs, healthcare and all the things they need?

“Fundamentally, mobility should be considered a human right. It’s not codified as one, but the link between good access to mobility and access to a good future is extremely strong. When we talk to city regulators, for example, they’re very keen to view autonomous vehicles as a way of making their transportation ecosystem more efficient – using AVs to get people onto the existing network, rather than replacing buses or train services.”

That’s certainly opened our eyes to the important work of the World Economic Forum, and we’ll be hearing more from Tim’s colleague, Michelle Avary, Head of Automotive and Autonomous Mobility, at next month’s Reuters event, Car Of The Future 2021.

Vehicle-to-everything (V2X) 4G and 5G connectivity via small cells can be a lifesaver.

Carsofthefuture.co.uk editor to host Automotive & Transportation session at Small Cells World Summit 2021

Carsofthefuture.co.uk has signed a media partnership agreement with The Small Cell Forum (SCF) for its three-day online Small Cells World Summit, The Future of Mobile Networks, on 11-13 May 2021.

Small Cells World Summit 2021 registration
Small Cells World Summit 2021 registration

As part of the deal, Carsofthefuture.co.uk editor Neil Kennett will moderate the Automotive & Transportation session from 11am on Wednesday 12 May, with high-profile speakers including: Peter Stoker, Chief Engineer for Connected and Autonomous Vehicles at Millbrook Proving Ground; Dr Maxime Flament, Chief Technology Officer at the 5G Automotive Association, one of the world’s leading authorities on Intelligent Transport Systems (ITS); Bill McKinley, Connected Car Business Lead at Keysight Technologies; and Mark Cracknell, Head of Connected and Automated Mobility at Zenzic, responsible for accelerating the self-driving revolution in the UK.

Neil Kennett, said: “We are delighted to partner with The Small Cell Forum for this exciting virtual event, which brings together mobile operators, vendors and regulators from around the globe. The Automotive & Transportation session will focus on connected and autonomous vehicle (CAV) opportunities, particularly vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X) communications, in-vehicle payments, and the rival ITS-G5 and C-V2X 5G technologies.

“Small cells deliver high-quality, secure 4G and 5G coverage, so there are clearly a multitude of new use cases in the connected car world and the wider mobility ecosystem. Aside from supporting self-driving, they can facilitate everything from in-car infotainment and shopping, to fixing technical problems before they occur and pre-empting likely crash scenarios. It is no exaggeration to say they could be a lifesaver.”

Carsofthefuture.co.uk readers can benefit from a 40% discount on Small Cells World Summit 2021 tickets using the code SCWS2021. See www.smallcells.world/

CGA’s simulations train autonomous vehicles to deal with environments specific to the UK.

Self-driving and smart cities: stop wishcasting and get real with predictive simulation

Our Zenzic CAM Creator series continues with Liverpool-based Jon Wetherall, Managing Director of CGA Simulation, and Max Zadow, Director of Future Coders.

By applying gaming knowledge to real-world mobility questions, CGA has created engaging simulations to study autonomous driving and smart city solutions.

JW: “My background is gaming. I used to work for the company that did Wipeout and F1 games. We made a racing game called Space Ribbon and one day, about five years ago, we got a call from The Department for Transport (DfT). They were doing a research project on virtual reality (VR) in the testing and training of drivers, specifically hazard awareness.

“We turned it into a game and it worked – people said their attitudes changed as a result of our simulations. The hardest scenario came early in the game – a parked lorry with a big blind spot – and a lot of people crashed. VR feels so visceral, the experience can be quite vivid and shocking. Of course, smarter cars will hopefully fix these types of situations.”

CGA Simulation junction and forecourt
CGA Simulation junction and forecourt

To pursue this goal, CGA received a grant from Innovate UK to create an artificial learning environment for autonomous driving (ALEAD).

JW: “The aim was to make these cars safer and we stayed true to our computer game history. We didn’t have the resources to lidar scan the whole area, so we did our own thing using mapping data. We made a digital twin of Conwy in north Wales and unlike other simulations we kept all the ‘noise’ in – things like rain. This was important because it is now well-understood that noise is a big challenge for autonomous vehicles (AVs).

“Modern autonomous driving stacks have 20 different subsystems and we generally focus on only one or two, to do with perception. There’s been massive progress in this area over recent years, to the extent that artificial intelligence (AI) can identify an individual by their gait. What’s more, you can now do this on a computer you can put in a car – this is one of the cornerstones of driverless.

“It’s not the first time people have been excited about AI. In the 50s they were saying it was only a few years away. It has taken much longer than people thought, but major problems have now been solved.

“We are lucky to have one of the world’s leading experts in radar on our doorstep, Professor Jason Ralph of The University of Liverpool, and he helped us develop the simulation. You have to feed the car’s brain, a computer, all the information it will need – from sensors, cameras, GNSS – and you can do all that in the software.”

MZ: “In particular, The University of Liverpool were interested in how weather affects things, right down to different types of rain and mist. In California, if an AV encounters conditions it can’t handle, like heavy rain, it pulls to the side of the road. That’s ok for San Francisco but not for Manchester!

“A few years ago, everyone seemed to be using the example of an AV encountering a kangaroo. How would it cope? The point is you can use our simulations to train cars, to create algorithm antibodies for once in a lifetime events and regular things in different environments. That remains an essential part of what’s needed to make AVs a reality.

“We picked Conwy partly because it has very different patterns of land use to America. An early use case for AVs is predicted to be taxis, but in the UK these are most frequently used by people who don’t own their own car, and they often live in high density housing or narrow streets. The operational design domains (ODDs) are going to have to deal with environments specific to this country – steep hills, roads which twist and turn, and changeable weather.”

Mobility Mapper

Wetherall and Zadow’s latest collaboration is Mobility Mapper, a project to create greener and more intelligently designed transport hubs. The technology underpinning Mobility Mapper has been used previously by the team to model Covid 19 spread, autonomous vehicle technology and by the Liverpool 5G Create project (funded by DCMS as part of their 5G Testbeds and Trials Programme).

JW: “E-hubs are basically an extension of what used to be called transport hubs – train or bus stations. They’ll provide charging facilities and access to different modes of transport, for example, you can drop off an e-scooter and hop into a shared autonomous car.

“Here in Liverpool, there was a big trial of e-scooters, big in international terms not just UK. The worry was that a lot of them would end up in the canal, but that didn’t happen. The trial was incredibly successful. It’s all about linking that movement and nudging people away from car ownership.”

MZ: “We were already thinking about how Jon’s technology could be used for mobility as a service (MAAS) when we attended a virtual future transport conference in LA with the Centre for Connected and Autonomous Vehicles (CCAV).

“That was an influence, as was an Intelligent Transportation Systems (ITS) trade show in Copenhagen, where we saw an autonomous tram system designed to take bicycles. It was a small step from there to imagining autonomous trams carrying autonomous delivery pods.

“This is classic smart city stuff but you need to know how these e-hubs are likely to be used, with no track record, nothing to go on. We need simulated environments to make best guesses in. That’s Mobility Mapper.”

JW: “It is early days, still in the development phase, but the authorities in both Manchester and Liverpool have agreed there’s a need for such a predictive simulation tool.”

As we wrap-up a thoroughly enjoyable interview, Max dons his Director of Digital Creativity in Disability hat: “Autonomous delivery bots are basically electric wheelchairs without a person, so there’s clearly a potential benefit, but there needs to less wishcasting and more real work on how accessibility will be affected.”

For further info, visit CGAsimulation.com

Humanising Autonomy uses behavioural psychology and computer algorithms to make cities safer for pedestrians and cyclists.

Using cameras and AI to protect vulnerable road users

Our Zenzic CAM Creator series continues with Raunaq Bose, co-founder of Humanising Autonomy.

Before establishing predictive artificial intelligence (AI) company Humanising Autonomy in 2017, Raunaq Bose studied mechanical engineering at Imperial College London and innovation design engineering at the Royal College of Art. Focusing on the safety of vulnerable road users, Humanising Autonomy aims to redefine how machines and people interact, making cities safer for pedestrians, cyclists and drivers alike.

RB: “Our model is a novel mix of behavioural psychology, deep learning and computer algorithms. We work with OEMs and Tier 1 suppliers on the cameras on vehicles, with the aftermarket on retrofitted dashcams, and also with infrastructure. Our software works on any camera system to look for interactions between vulnerable road users, vehicles and infrastructure in order to prevent accidents and near misses. While most AI companies use black box systems where you can’t understand why decisions are made, we set out to make our models more interpretable, ethically compliant and safety friendly.

“When it comes to questions like ‘Is this pedestrian going to cross the road?’, we look at body language and factors like how close they are to the edge of the pavement. We then put a percentage on the intention. Take distraction, for example, we cannot see it but we can infer it. Are they on the phone? Are they looking at the oncoming vehicle? Is their view blocked? These are all behaviours you can see and our algorithm identifies them and puts a numerical value on them. So we can say, for example, we’re 60% sure that this pedestrian is going to cross. This less binary approach is important in building trust – you don’t want lots of false positives, for the system to be pinging all the time.

“One of the main things we’re likely to see over the next decade is increased use of micromobility, such as cycling and e-scootering. At the same time you will see more communication between these different types of transportation, and also with vehicles and infrastructure. The whole point of ADAS is to augment the driver’s vision, to reduce blind spots and, if necessary, take control of the vehicle to avoid a shunt. Then there’s the EU agreement that by 2022 all buses and trucks must have safety features to detect and warn of vulnerable road users.

“We currently only look at what’s outside the vehicle, but with self-driving there will be monitoring of the cabin. In terms of privacy, we have a lot of documentation about our GNPR processes and how we safeguard our data. Importantly, we never identify people, for example, we never watch for a particular individual between camera streams. We look to the future with autonomous cars but for now we’re focused on what’s on the road today.”

For further info visit humanisingautonomy.com.

Dr Joanna White says Highways England is currently more focused on the connected bit of connected and automated mobility (CAM).

Highways England expert predicts Level4 self-driving in towns before motorways

Our Zenzic CAM Creator series continues with Dr Joanna White, Head of Intelligent Transport Systems at Highways England.

As the body responsible for designing, building and maintaining our motorways and major A-roads, Highways England (HE) is a uniquely important player in the UK connected and automated mobility (CAM) ecosystem. Here, Head of Intelligent Transport Systems at Highways England, chartered engineer Dr Joanna White, outlines its work on CAM.

Dr Joanna White, Head of Intelligent Transport Systems at Highways England
Dr Joanna White, Head of Intelligent Transport Systems at Highways England

JW: “A key aim in improving our service is to look at how we can safely use emerging technology to better connect the country – people and places, families and friends, businesses and customers. This includes what digital channels we might use, delivering a cleaner road environment and achieving net zero carbon.

“Our connected corridor project on the A2/M2 in Kent finished 10 months ago and we are just completing the evaluation. Collaboration is vital and this was a joint project with Kent County Council (KCC), Transport for London (TfL), the Department for Transport (DfT) and others. It was also part of a wider European project, Intercor.

“We are currently more focused on the connected bit of CAM, building on the services we already provide. This includes beaming information directly into vehicles (replicating what you see on the gantries) and also what data we can anonymously collect from vehicles’ positioning sensors. Can we maintain service from one part of the network to another? Can we do it in an accurate, timely and secure way? How do people feel about it?

“We try not to choose particular technologies – whether it’s radar, lidar, cellular – we are interested in all of it. It could be 5G and, via the DfT, we work closely with the Department for Digital, Culture, Media and Sport (DCMS), which leads on that. One of the most positive government actions was the requirement for mobile operators to provide 90% coverage of the motorway network by 2026.

Highways England car interior 2
Highways England in-car upcoming junction message

“We were very proud to be involved with the HumanDrive project in which a self-driving Nissan Leaf navigated 230 miles from Cranfield to Sunderland. It was a great learning experience in how to  conduct these trials safely, underpinned by our safety risk governance. We had to identify all the risks of running such a vehicle on the strategic road network (SRN), and find ways to mitigate them. It was fascinating to see how it coped on different types of roads, kept to the lines and responded to road sign information.

“Then there’s our Connected and Autonomous Vehicles: Infrastructure Appraisal Readiness (CAVIAR) project, which has been slightly delayed due to Covid. We are building a simulation model of a section of the M1, a digital twin, and we have a real-world car equipped with all the tech which will start operating in 2021. That will collect a lot of data. This is one of our Innovation competition winning projects, run by InnovateUK.

“Within Highways England we have a designated fund for this kind of research, and that means we can invest in further trials and do the work needed to provide more vehicle-to-infrastructure (V2I) communications.

“Personally, I think that Level4 self-driving, eyes off and mind off, is years away, perhaps decades, certainly in terms of motorway environments. However, we are constantly in discussion with government on these issues, for example, we contributed to the recent consultation on Automated Lane Keeping Systems (ALKS).

“Working closely with industry and academia, we have already started off-road freight platooning and are looking to move to on-road trials. We’ve had lots of discussions about freight-only lanes and the left lane is often suggested, but you have to consider the design of the road network. There are lots of junctions close to each other, so how would that work, especially at motorway speeds? At first, I see self-driving more for deliveries at slower speeds in urban areas but, as always, we will listen to consumer demand.”

For further info see highwaysengland.co.uk.

Vivacity Labs founder backs the citizen first vision of 21st century privacy.

Time for a grown-up conversation about cameras, AI, traffic flow and privacy

Our Zenzic CAM Creator series continues with the founder of Vivacity Labs, Mark Nicholson.

Vivacity uses sensors, cameras and artificial intelligence (AI) to provide “up-to-the-minute data on urban movement”, helping local councils to promote active travel, improve safety and reduce congestion. Big Brother you say? Well, it’s 2020 not 1984 and CEO Mark Nicholson is very happy to have that debate.

MN: “As the transport network becomes more complicated, local authorities need more powerful tools. Tech giants have invaded the ecosystem, and when you’re dealing with Uber and driverless cars, sending someone out with a clipboard just isn’t going to cut it. We bring new technology which tells them about their transport, so they can adapt and gain control over the ecosystem.

“We started with sensors and then video-based sensors, generating huge data sets and better quality data. We’ve looked at everything from cyclists undertaking to lockdown journey times and asked: how can we use this data to make the road system more efficient? The next phase is autonomous vehicles, because that ecosystem needs to work with both infrastructure and other road users.

“Privacy is not just a key issue in self-driving but in the whole smart city. There are basically two visions – the Chinese and the European. The Chinese vision is very invasive, it’s 1984 and that’s the point. The alternative is the European vision, with the General Data Protection Regulation (GDPR). For a while it looked like there might be a third, a corporate American vision. Google were running a smart city project in Canada, but it didn’t work out so we’re back to two models.”

If you don’t know about the Quayside project in Toronto, a much-shared Guardian article from 2019 warned of surveillance capitalism, data harvesting and the possibility that algorithms could be used to nudge behaviour in ways that favour certain businesses. You can read it here or, er, Google it.

MN: “We’re very much on the European, privacy-centric, citizen first side – an ecosystem that gives the benefits of mass data without the costs to privacy. All our data is anonymised at source, everything. Each camera or sensor unit has its own processor on board which uses AI to extract information, for example, what are the road users? The imagery is discarded within a few milliseconds, all we keep is the data. We recently looked at how socially distanced people were in Kent and, although no personal data was collected, it caused a bit of controversy.”

It did indeed. “Big Brother is watching your social distancing: Fury as traffic flow cameras are secretly switched to monitor millions of pedestrians in government-backed Covid project”, screamed the headline in the Daily Mail. We’d better get back to self-driving.

MN: “Over the last couple of years the hype around driverless cars has died down. There’s been a recognition that autonomous vehicles are not as close as Elon Musk promised. The technology is progressing though. They can drive quite well on motorways and in quiet areas, but in busy, congested areas they struggle.

“What would happen if you rolled out driverless cars today? My suspicion is they would probably perform to about the same level as human drivers. The question is: Are we happy with systemic risk rather than personal risk? Can we engineer out that risk? Can we make the infrastructure intelligent enough so it works with vehicles in even the most challenging situations?

“The best way to end the no-win scenario is to have enough data to dodge it. Most of these incidents come about due to an unforeseen element, such as a pedestrian stepping out, a cyclist skipping a red light or someone speeding round a corner. If the vehicle knows about it in advance, the trolley problem never occurs. For me it’s about having the data earlier, and how we, as representatives of infrastructure, can help to give cars that information.”

For further info, visit vivacitylabs.com.

Influential designer sees an opportunity to rethink the whole UK transport system.

Designer Priestman questions carmakers and champions elegant public transport

Our Zenzic CAM Creator series continues with award-winning designer Paul Priestman, co-founder of PriestmanGoode

Famous for designing Virgin’s Pendolino train and the BT HomeHub, Paul Priestman is one of the UK’s 500 most influential people, according to The Sunday Times. Here, he describes three exciting connected and automated mobility concepts: 1) The Moving Platforms infrastructure network; 2) A modular electric car for autonomous network transit (ANT) company, Dromos; and 3) The Scooter for Life automated electric scooter.

PP: “I’ve always been interested in mass transit and its relationship with the city. Over 30 years, the company has grown and we’re now involved in all forms of transport, even space travel. We take ideas from one sector and transfer them to others.”

Moving Platforms

PP: “This was an idea that grabbed people’s attention: a tram that can move around a city, then go to the outskirts and join a high speed rail line, without stopping, and take you to another town or even country.

PriestmanGoode Moving Platforms animation

“First and last mile is the logjam. If you can crack that then people won’t need personal transport. The cost of private car ownership is astronomical – you have to park it, maintain it, it depreciates something rotten. But carsharing isn’t working yet because the cars themselves are not designed for it – they are designed to be personal.

“There’s an opportunity to rethink the whole system from purchase through leasing to shared ownership and public for hire models, alongside designing an interior which is appropriate for these variants of use. There are a number of disruptors in the market and just as we’ve seen other markets completely transformed through disruptors such as Uber or Amazon, so there’s an opportunity to look at the car industry in the same way.

“The car industry keeps forcing the same product on us, but the market wants change. For the majority of people, especially in cities, you can’t equate private car ownership with the open road, where you can do what you want, it’s just not realistic, but I understand that there are different needs for rural and urban dwellers.

“London is an example of a great public transport system, although most of our stations were designed 150 years ago and haven’t changed much. I use an app to see when the next bus is due and then walk up to the bus stop. The bus usually arrives on time and we fly down our own lane on the Euston Road, passing all the cars stuck in traffic.”

Dromos ANT

PP: “The system is important, not just the vehicle. It is elegant public transport designed around the passenger – the first autonomous system to deliver mass transit, and the infrastructure belongs to the city. The car we designed is half the width of a normal car, with space for two or three people, and it can be steam cleaned. It’s a personal vehicle which will come to you, wherever you are, and then join a dedicated track, becoming almost like a train, before peeling off to complete the journey.”

PriestmanGoode modular electric car for Dromos
PriestmanGoode modular electric car for Dromos

At this point, Priestman refers to our interview with the arch critic of driverless cars, Christian Wolmar. PP: “The problem with some self-driving concepts is you still get traffic jams full of cars with no one in them. A lot of that congestion is caused by delivery vehicles – every time you buy something online you’re causing a traffic jam. Once you have a vehicle which has a dedicated highway you’re free from other traffic and can travel faster and closer together.”

Scooter for Life

PP: “The Scooter for Life was a special commission for the New Old exhibition at the Design Museum. We gave it three wheels, so it doesn’t fall over, and a basket for your bag or dog. It’s electric and can also be automated, so there’s a take-me-home button. People immediately think of autonomous vehicles as being car-sized, but I think they might be smaller. The only reason cars were that size in the first place was to fit in the huge engine, which you no longer need.

PriestmanGoode Scooter for Life
PriestmanGoode Scooter for Life

“People taking the tube for only a stop or two really slow things down, whereas bikes, scooters and walking mean you see more of the city. It’s a bit reclaim the streets and reminds me of the Walklines we designed years ago. The Covid situation, terrible as it is, has shown us a less congested London –an increase in the use of bikes and walking, a city moving in a much healthier way. For me, that’s much more beautiful.”

For more on these designs, and a prototype Hyperloop passenger capsule, visit priestmangoode.com.

California-based Xona Space is working on new generation Low Earth Orbit GPS for self-driving cars.

Next generation: self-driving GPS is out of this world

Our Zenzic CAM Creator series continues with the Co-Founder and CEO of Xona Space, Brian Manning.

Compared to the familiar British reserve, California-based Xona Space is from a different planet. This self-declared “group of space ninjas, engineers, GPS nerds, motorcycle racers and adventurers” has helped to put over 50 vehicles in space and published over 50 scientific papers on navigation technology. That’s handy because today’s sat navs are creaking under the sky high requirements of self-driving cars. Brian Manning says his company’s new Pulsar positioning, navigation and timing (PNT) service will provide the necessary security, availability and accuracy.

BM: “We’re primarily working on new generation GPS from Low Earth Orbit (LEO) – something much more secure, precise and resilient. It will sure-up a lot of issues. GPS has been phenomenal, it has given a lot of value for a long time, but people are now trying to use it for applications it wasn’t designed for. It’s tough to get where you’re going when you don’t know where you are.”

A reference perhaps to the GPS spoofing incident at the 2019 Geneva Motor Show, when cars from a host of manufacturers displayed their location as Buckingham, England, in 2036! Apparently Americans also do sarcasm now. We swiftly move on to realistic timescales for the SAE levels of driving automation.

BM: “Ubiquitos Level5 is probably still far off, but personally I think we’ll start seeing deployments in contained environments within five years. I came from SpaceX so I know that with the right team you can get an amazing amount done in a very short time. A big part of Xona’s focus is to get Level5 tech out of the contained environments and also to work in bad weather and more rural environments, where current systems struggle. Rather than which sectors will be early adopters, I look more geographically – to highways with autonomous lanes. That said, it will probably be more on the freight side first because there’s more safety standards involved when you have passengers on board.”

We were wondering which might come first, Level5 or a winner in the Presidential election, but that’s all sorted now, isn’t it?

For further info, visit Xonaspace.com

Bold predictions about our driverless future by petrolhead Clem Robertson.

Meet the maverick radar expert of UK drones and driverless

Welcome to a new series of interviews with our fellow Zenzic CAM Creators. First up, Clem Robertson, CEO of R4dar Technologies.

As a keen cyclist who built his own Cosworth-powered Quantum sportscar from scratch, it’s no surprise that the founder of Cambridge-based R4dar takes a unique approach to self-driving. Indeed, his involvement can be traced directly to one shocking experience: driving down a local country lane one night, he had a near miss with a cyclist with no lights. He vividly remembers how a car came the other way, illuminating the fortunate rider in silhouette and enabling an emergency stop. It proved to be a light bulb moment.

R4dar urban scene tags
R4dar urban scene tags

What does R4dar bring to connected and automated mobility (CAM)? 

CR: “I’d been working in radar for five or six years, developing cutting edge radar for runways, when the incident with the cyclist got me thinking: Why could my cruise control radar not tell me something was there and, importantly, what it was? This kind of technology has been around for years – in World War II we needed to tell the difference between a Spitfire and a Messerschmitt. They placed a signal on the planes which gave this basic information, but things can be much more sophisticated these days. Modern fighter pilots use five different methods of identification before engaging a potential bogey, because one or more methods might not work and you can’t leave it to chance whether to blow someone out of the sky. The autonomous vehicle world is doing similar with lidar, radar, digital mapping etc. Each has its shortcomings – GPS is no good in tunnels; the cost of 5G can be prohibitive and coverage is patchy; cameras aren’t much good over 100 metres or in the rain, lidar is susceptible to spoofing or misinterpretation; digital maps struggle with temporary road layouts – but together they create a more resilient system.”

How will your solutions improve the performance of self-driving cars?

CR: “Radar only communicates with itself, so it is cyber-resilient, and our digital tags can be used on smart infrastructure as well as vehicles – everything from platooning lorries to digital high vis jackets, traffic lights to digital bike reflectors. They can tell you three things: I am this, I am here and my status is this. For example, I’m a traffic light up ahead and I’m going to turn red in 20 seconds. Radar works in all weathers. It is reliable up to 250-300m and very good at measuring range and velocity, while the latest generation of radars are getting much better at differentiating between two things side-by-side. We are working with CAM partners looking to use radar in active travel, to improve safety and traffic management, as well as with fleet and bus operators. We are also working with the unmanned aerial vehicle (UAV) industry to create constellations of beacons that are centimetre-accurate, so that delivery drones can land in a designated spot in the garden and not on the dog!”

R4dar cyclists in fog
R4dar cyclists in fog

What major developments do you expect over the next 10-15 years?

CR: “Fully autonomous vehicles that don’t carry passengers will come first. There are already little robots on the streets of Milton Keynes and, especially with Covid, you will see a big focus on autonomous last mile delivery – both UAVs and unmanned ground vehicle (UGVs). You never know, we might see delivery bots enacting a modern version of the computer game Paperboy. More and more people in urban areas with only roadside parking will realise that electric cars are tricky to charge, unless you put the chargers in the road, which is expensive. If you only need a car one or two days a month, or even for just a couple of hours, there will be mobility as a service (MAAS) solutions for that. Why would you bother with car ownership? E-scooters are one to keep an eye on – once they’re regulated they will be a useful and independent means of getting around without exercising. Town centres will change extensively once MAAS and CAM take off. There will be improved safety for vulnerable road users, more pedestrianisation, and you might see segmented use at certain times of day.”

Do you see any downsides in the shift to self-driving?

CR: “Yes! I love driving, manual gearboxes, the smell of petrol, the theatre, but you can see already that motorsport, even F1, is becoming a dinosaur in its present form. People are resistant to change and autonomous systems prompt visions of Terminator, but it is happening and there will be consequences. Mechanics are going to have less work and will have to retrain because electric motors have less moving parts. Courier and haulage driving jobs will go. Warehouses will be increasingly automated. MAAS will mean less people owning their own cars and automotive manufacturers will have to adapt to selling less vehicles – it’s a massive cliff and it’s coming at them much faster than they thought – that’s why they’re all scrambling to become autonomous EV manufacturers, it’s a matter of survival.”

R4dar lights in fog
R4dar lights in fog

So, to sum up….

CR: “Fully autonomous, go-anywhere vehicles are presented as the utopia, but there’s a realisation that this is a difficult goal, or at least a first world problem. There might always be a market for manned vehicles in more remote locations. A lot of the companies in this industry specialise in data, edge processing and enhanced geospatial awareness, and that will bring all kinds of benefits. How often have you driven in fog unable to see 10m in front of you? Self-driving technology will address that and many other dangers.”

Hearing bold predictions like these from a petrolhead like Clem, suddenly Zenzic’s ambitious 10-year plan seems eminently achievable.

For further info, visit the R4dar website.

Trade tips: electric vehicle servicing

Please note: a version of this article first appeared in the February 2019 issue of IMI Magazine and was written for a motor trade audience.

In our Dec/Jan issue, James Dillon predicted that “setting up as the local electric vehicle specialist will pay dividends in the long run”.

The experience of Tomsett MOT Centre, in Kent, gives credence to this theory. Owner Dave Tomsett explains: “I keep up with new technologies and getting into EV sounded like a wise move, so I started researching training.

“I did the one-day IMI awareness course, which was excellent, and went on to do level 1 and 2 with Bosch, and level 3 and 4 with Pro-Moto.

“We are one of very few garages to have these qualifications and, because we do trade MOTs as well as retail, we could see there was demand.

“In January 2018, we dedicated a bay to hybrid and electric, lined it out and invested in new equipment. We already had Snap-on diagnostic tools but we purchased a G-scan 2 and other kit such as insulated gloves and workshop signage.

“We did a local press launch highlighting that we were making our plug-in point available as a free resource, and it went down very well.”

Tomsett have a Prius courtesy car stickered-up to advertise that they’re an EV specialist and Dave heaps praise on the new Hybrid and Electric Vehicle Repair Alliance (HEVRA).

“We share information with other repairers and even borrow tools, which saves you buying things you might only use once in a blue moon,” he says.

Peter Melville established HEVRA following a problem with his parents’ plug-in Vauxhall. “I started in independent garages and was working for Snap-on when this issue arose with the Ampera’s air con,” he says. “The nearest franchised dealer was an hour away and several good independents wouldn’t take it.

“In the end, I found a mobile air con specialist who had the kit to work on high voltage. I realised there was a gap in the market – a service to help people find local independent garages covering EV. That was the embryo for what became HEVRA.

“We carefully vet all our members to ensure they have the appropriate qualifications and correct tools. Then, for £25 a month, we provide a technical hotline, a quarterly newsletter and advertise on all the main electric car forums, to let people know there is an alternative to the main dealers.”

Over at Pro-Moto, director Eliot Smith is at the forefront of EV training, having previously been responsible for upskilling Honda’s UK network.

“When we started Pro-Moto about 10 years ago I was on the IMI group putting together EV courses, along with representatives from City & Guilds and the Fire & Rescue Service,” he says.

“We now work with manufacturers including JLR, Hyundai, Kia, Mazda, Fiat, Toyota and McLaren, as well as independent garages, and we certified about 300 technicians to level 4 last year.

“The principles are the same on all EVs. Electricity is never going to change, the whole universe is built on it, but different manufacturers take different approaches to things like battery management.

“In the early days, we were only doing about 10 courses a year, but we’ve got five courses running concurrently next week. Demand is high.

“We unravel the complexities, give people experience of different platforms, make them aware of the risks and give them the skills to service, maintain and repair if necessary.

“Manufacturers are bringing more EVs to market but as an industry we are failing to explain it to the end user. What’s best for them – a battery car or what type of hybrid? Staff in dealerships need to be educated in these technologies to give them the confidence to explain it to customers.

“Manufacturers know where they are with the internal combustion engine. With electric, they aren’t so sure. What if there was a warranty issue? What are the options for second life batteries? How do they mitigate against these unknowns?

“What manufacturers can do is make sure their technicians have the right skills, tools and parts to service EVs, and the aftermarket must be ready to pick up where franchised dealers leave off.”

Demonstrating the depth of expertise in the repair sector, Neil Kidby, product category manager at Sealey, also did the level 2 and 3 courses with Bosch.

“We are lagging behind Europe in terms of Alternative Fuel Vehicle (AFV) penetration, but these technologies are coming and it will happen quickly,” he says. “Before long you might be powering your house from your Toyota.

“The fact is a lot of technicians are frightened of electric cars. The battery is scary, but if you take that out of the equation it is very much like working on any other car. What you must do is protect yourself and have a sealed environment.

“This isn’t as expensive or such a leap as many think. Hybrid vehicles have been around for 100 years after all. Isolate the battery and follow the manufacturers’ instructions and you will lay the foundations for the continued success of your business.

“The essentials are: an exclusion zone – barriers and signage to stop people wandering in (as a bonus this also advertises that you do this type of work); then there’s the kit – an insulation mat and gloves – and a category III voltmeter.

“There’s also the only item we sell which we hope is never used: a rescue pole. People don’t like to think about it, but you have to. In the worst case scenario, with electrocution there’s a risk that a body could catch fire if it isn’t isolated.

“In terms of sales, we’ve seen an upward trend over the last six months. We currently sell mainly to independent garages but are in negotiations with a major vehicle manufacturer too.”

Back at the coalface, Dave Tomsett concludes: “We cannot earn a living from EV alone yet, but it is growing. Overall, we’ve invested around £7.5k in new tools, training and equipment. Some jobs can be time-consuming but it’s a learning curve.

“We have a new apprentice coming in the summer and he’ll be involved with EVs from day one. That’s vital because we need to attract more skilled youngsters into the industry – working on vehicles like these should be an appealing alternative to the university route.

“Attitudes are changing; the 2040 deadline for petrol and diesel sales will focus minds, range will increase and as battery technology improves it will snowball.”

An important question we’ve not delved into is whether the government should legislate to require anyone working on EVs to have further qualifications. We’ll explore that another day.