Dr Charlie Wartnaby says there’s an industry consensus that Level3 self-driving is not reasonable if it requires quick driver intervention.

Self-driving world first: multi-car cooperative crash avoidance

Our Zenzic CAM Creator series continues with Dr Charlie Wartnaby, chief engineer at Applus IDIADA.

Way back in 2019 we covered IDIADA’s role in the construction of the new CAVWAY testing facility, and that investment continued with a large new venture. With a PhD in physical chemistry from the University of Cambridge, Charlie Wartnaby was technical lead for the ground-breaking Multi-Car Collision Avoidance (MuCCA) project.

Charlie Wartnaby, chief engineer at Applus IDIADA
Charlie Wartnaby, chief engineer at Applus IDIADA

CW: “Certainly the funding from the Centre for Connected and Autonomous Vehicles (CCAV) for MuCCA and CAVWAY were big wins for us. Traditionally, we’d focused on automotive electrics and engine management, but we could see there was all this exciting CAV work. Now we’re working with an OEM I can’t name to run an field operational test using our IDAPT development tool – a high performance computer with GPS and car-to-car communications – as a spin-off from MuCCA.

“With the MuCCA project, we think we achieved a world first by having multiple full-sized vehicles do real-time cooperative collision avoidance. We still have the cars for further R&D when time, budget and Covid allow.

IDIADA’s Multi-Car Collision Avoidance (MuCCA) project

“In the UK, we’re focussed on building a new proving ground (CAVWAY) near Oxford, which should open in 2021. There’s also our CAVRide Level4 taxi project, at our headquarters near Barcelona. CAVRide shares some of the technology developed for MuCCA and they’ve done some really interesting vehicle-in-the-loop testing, having the real vehicle avoid virtual actors in a simulation environment.

“In the short term, we’re really working hard on the C in CAV. Connected vehicles offer massive safety and efficiency improvements, for example, by warning about stopped vehicles or advising on speed to get through traffic lights on green. There’s a bit of a VHS versus Betamax situation, with both WiFi-based short-range communications and the C-V2X 5G-based protocol, so we’ve upgraded IDAPT to support both.

“Personally I think that while heroic work by the big players shows robotaxi applications are feasible, economic viability is a long way off, 2030 maybe. Watch the latest Zoox and Waymo videos from America, they’re mesmerising! No way is that kind of tech going to be installed in private cars any time soon because it’s eye-wateringly expensive. Think about the costs involved in making every taxi driverless – it’d be out of all proportion to replacing driver salaries, especially considering backup teleoperators and maintenance and charging personnel.

“These big self-driving companies aren’t operating in the UK yet, but we do have very successful smaller players with intellectual property to sell. The UK government has been supporting a good number of R&D projects, via the CCAV and UK Research and Innovation (UKRI), and the regulatory environment has been reasonably friendly so far.

“I feel the first practical applications are likely to be low-speed shuttle buses and small autonomous delivery droids, but trucking is a very important area. If lorry drivers were permitted to stop their tachographs while napping in the back of the cab once on the motorway – only clocking up hours for parts of long journeys – that would make a viable economic case for a Level4 operating design domain (ODD) of ‘just motorways’, which is harder to justify merely as a convenience feature in private cars.

“In terms of current tech, emergency lane keeping systems (ELK), to stop drifting, are a major breakthrough, requiring cameras, sensors and autonomous steering. I welcome the road safety, however, if drivers engage automation systems like ALKS (automated lane keeping) by habit, for sure their skills will be affected. Perhaps there’s a case for the system enforcing some periods of manual driving, just as airline pilots perform manual landings to stay in practice even in planes that can land themselves.

“Concerns about timely handover are well-founded and I think there’s an industry consensus now that Level3 is not reasonable if it requires quick driver intervention. We see up to 20 seconds before some unprepared drivers are properly in control when asked to resume unexpectedly. It really requires that the vehicle can get itself into (or remain in) a safe state by itself, or at least there needs to be a generous takeover period. The difference between L3 and L4 is that the latter must always be able to achieve that safe state.”

For further info, visit www.idiada.com

Prof John McDermid says the trolley problem is a nonsense, requiring self-driving vehicles to make distinctions that you or I could not.

Why assuring machine learning is crucial to self-driving

Our Zenzic CAM Creator series continues with Professor John McDermid OBE FREng, Director of the Assuring Autonomy International Programme at the University of York.

Professor John McDermid has been Director of the Assuring Autonomy International Programme, a partnership between Lloyd’s Register Foundation and the University of York, since 2018. He advises government and industry on safety and software standards, including Five and the Ministry of Defence, and was awarded an OBE in 2010. The author of 400 published papers, his 2019 article, Self-driving cars: why we can’t expect them to be ‘moral’, was highly critical of the oft-quoted trolley problem in relation to driverless vehicles.

Professor John McDermid, University of York
Professor John McDermid, University of York

PJM: “I’ve been at York for 30 years working on the safety of complex computer-controlled systems. What you define as complex changes all the time. In January 2018 we started a new programme, looking at the assurance of robots and autonomous systems, including automated mobility, but also robots in factories, healthcare and mining.

“It’s important to demonstrate the safety and security of novel technologies like machine learning, but there’s often a trade-off involved, because you can make things so secure they become unusable. If I open my car with the remote key I have a couple of minutes before it automatically locks again, and there’s a small possibility that someone could get their finger trapped if they try to open the door just as it automatically re-locks. We encounter these types of trade-offs all the time.”

What major shifts in UK transport do you expect over the next 10-15 years?

PJM: “Over the next decade we will get to Level4 autonomous driving, so in defined parts of the road network cars will drive themselves. We will solve the safety problems of that technology, but I’d be surprised if it is within five years. Despite the rhetoric, Tesla’s approach is not on track for safe autonomous driving within the year.

“At the same time, there will be a trend towards Mobility as a Service (MAAS). I love my car, but I’ve had it for 18 months and have only driven 7,000 miles. I sometimes ask myself why I have this expensive piece of machinery. A recent study showed that the average car in the UK is only used for 53 minutes a day. Mostly, they sit doing nothing, which, considering the huge environmental impact of manufacturing all these vehicles, is very wasteful.

“If I could call upon a reliable autonomous vehicle and be 99% certain that it would arrive in a timely manner, say within five minutes, I’d probably give up my car. It should also be noted that the two trends go hand-in-hand. Having Level4 is critical to achieving MAAS, delivering all the convenience of having your own car without any of the hassle.”

Can you address some of the data privacy concerns surrounding connected cars?

PJM: “We are back to this issue of trade-offs again. I want my MAAS so I’ve called it up and given the service provider some information about where I am. If they delete that information after I’ve paid then I’m prepared to accept that. What if the company wants to keep the information but won’t allow access except for law enforcement – would that be acceptable to the public? What can government agencies require this company to do?

“Another example: What if your 10-year-old daughter needs MAAS to take her to school? A reasonable concerned parent should be able to track that. What if the parents are divorced, can they both access that data? There’s clearly a privacy issue and there needs to be a legislative framework, but it’s a balance. For the purposes of getting from A to B, most people would accept it, so long as their data is normally kept private.”

Can you address concerns about the trolley problem in relation to self-driving cars?

PJM: “My basic feeling is that the trolley problem is a nonsense, a distraction. All these elaborate versions require self-driving vehicles to make distinctions that you or I could not.

“The big Massachusetts Institute of Technology (MIT) study sets a higher standard for autonomous vehicles than any human can manage. Who do you save, a child or an older person? The child because they can be expected to live longer and benefit more. However, this is based on false assumptions. I don’t believe in the split second of a crash you go into that sort of thought process – you focus on controlling the vehicle and in most cases the best option is to (try to) stop.

“I don’t know why people find the trolley problem so compelling, why they waste so much energy on it. I really wish it would go away. Fortunately, most people seem to be coming to that conclusion, although one of our philosophy lecturers strongly disagrees with me.”

Which sectors do you think will adopt self-driving first?

PJM: “Farming applications might come first as they are short of people in agriculture and the problems are simpler to overcome. If you geofence a field where you wish to use a combine harvester and equip it with technology so it doesn’t run over a dog lying asleep in the field – there’s already tech which is getting quite close to that – then that’s an attractive solution.

“Last mile freight via small delivery robots (like Nuro in the US and Starship here in the UK) might also come quickly, but longer distance freight will probably require a segregated lane. Even last mile robots come with risks, like people tripping over them.

“There’s a lot of commercial desire for robotaxis, and this is potentially a very big market. There are already genuine driverless taxis in the US now, but they have a much simpler road structure than here in the UK.

“The crucial technical bit is finding accepted ways of assuring the machine learning. I would say that, I work on it, but without that regulators and insurers won’t allow it.”

For further info, visit www.york.ac.uk/assuring-autonomy

Why digital twins are crucial to the development of ADAS and CAV.

This is no game: how driving simulations save lives

Our Zenzic CAM Creator series continues with Josh Wreford, automotive manager at driving simulation software provider, rFpro.

With digital twins so crucial to the development of advanced driver assistance systems (ADAS), carmakers including Ferrari, Ford, Honda and Toyota have turned to driving simulation software provider, rFpro. Here, automotive manager Josh Wreford explains the company’s cutting-edge work.

Josh Wreford of rFpro
Josh Wreford of rFpro

JW: “While others use gaming engines, our simulation engine has been designed specifically for the automotive industry, and particularly connected and autonomous vehicles (CAVs). That’s a big difference because gaming software can use clever tricks to make things seem more realistic, whereas our worlds are all about accuracy.

“We use survey grade laser scanning to create highly detailed virtual models and have an array of customers testing many different ADAS and CAV features, everything from Level1 right up to Level5. We can go into incredible detail, for example, with different render modes for lidar, radar and camera sensors, it is possible to simulate different wavelengths of the electromagnetic spectrum for detailed sensor modelling. It is up to the customer to decide when their system is ready for production, but we save them a lot of time and money in development.

rFpro simulation Coventry
rFpro simulation: Coventry town centre

“Safety critical situations are extremely difficult to test in the real world because it’s dangerous and crashing cars is expensive! That’s why digital twins are great for things like high speed safety critical scenarios – you can test human inputs in any situation in complete safety. Whenever you have a human in play you’re going to have problems because we’re great at making mistakes and are very unpredictable! rFpro provides high quality graphics running at high frame rates to immerse the human in the loop as much as possible. This allows accurate human inputs for test scenarios like handover to a remote driver. We can even allow multiple humans to interact by driving in the same world.

rFpro simulation Holyhead
rFpro simulation: Holyhead

“Before joining rFpro, I worked at McLaren Automotive on gearbox control software, which involved very similar control coding to ADAS. Ethical questions are always interesting, but ultimately a control engineer has to decide what the next action should be based on the exact situation. Our simulations drive robust engineering and better algorithms, so you get the best reaction no matter what occurs.”

For further info, visit rfpro.com.

Influential designer sees an opportunity to rethink the whole UK transport system.

Designer Priestman questions carmakers and champions elegant public transport

Our Zenzic CAM Creator series continues with award-winning designer Paul Priestman, co-founder of PriestmanGoode

Famous for designing Virgin’s Pendolino train and the BT HomeHub, Paul Priestman is one of the UK’s 500 most influential people, according to The Sunday Times. Here, he describes three exciting connected and automated mobility concepts: 1) The Moving Platforms infrastructure network; 2) A modular electric car for autonomous network transit (ANT) company, Dromos; and 3) The Scooter for Life automated electric scooter.

PP: “I’ve always been interested in mass transit and its relationship with the city. Over 30 years, the company has grown and we’re now involved in all forms of transport, even space travel. We take ideas from one sector and transfer them to others.”

Moving Platforms

PP: “This was an idea that grabbed people’s attention: a tram that can move around a city, then go to the outskirts and join a high speed rail line, without stopping, and take you to another town or even country.

PriestmanGoode Moving Platforms animation

“First and last mile is the logjam. If you can crack that then people won’t need personal transport. The cost of private car ownership is astronomical – you have to park it, maintain it, it depreciates something rotten. But carsharing isn’t working yet because the cars themselves are not designed for it – they are designed to be personal.

“There’s an opportunity to rethink the whole system from purchase through leasing to shared ownership and public for hire models, alongside designing an interior which is appropriate for these variants of use. There are a number of disruptors in the market and just as we’ve seen other markets completely transformed through disruptors such as Uber or Amazon, so there’s an opportunity to look at the car industry in the same way.

“The car industry keeps forcing the same product on us, but the market wants change. For the majority of people, especially in cities, you can’t equate private car ownership with the open road, where you can do what you want, it’s just not realistic, but I understand that there are different needs for rural and urban dwellers.

“London is an example of a great public transport system, although most of our stations were designed 150 years ago and haven’t changed much. I use an app to see when the next bus is due and then walk up to the bus stop. The bus usually arrives on time and we fly down our own lane on the Euston Road, passing all the cars stuck in traffic.”

Dromos ANT

PP: “The system is important, not just the vehicle. It is elegant public transport designed around the passenger – the first autonomous system to deliver mass transit, and the infrastructure belongs to the city. The car we designed is half the width of a normal car, with space for two or three people, and it can be steam cleaned. It’s a personal vehicle which will come to you, wherever you are, and then join a dedicated track, becoming almost like a train, before peeling off to complete the journey.”

PriestmanGoode modular electric car for Dromos
PriestmanGoode modular electric car for Dromos

At this point, Priestman refers to our interview with the arch critic of driverless cars, Christian Wolmar. PP: “The problem with some self-driving concepts is you still get traffic jams full of cars with no one in them. A lot of that congestion is caused by delivery vehicles – every time you buy something online you’re causing a traffic jam. Once you have a vehicle which has a dedicated highway you’re free from other traffic and can travel faster and closer together.”

Scooter for Life

PP: “The Scooter for Life was a special commission for the New Old exhibition at the Design Museum. We gave it three wheels, so it doesn’t fall over, and a basket for your bag or dog. It’s electric and can also be automated, so there’s a take-me-home button. People immediately think of autonomous vehicles as being car-sized, but I think they might be smaller. The only reason cars were that size in the first place was to fit in the huge engine, which you no longer need.

PriestmanGoode Scooter for Life
PriestmanGoode Scooter for Life

“People taking the tube for only a stop or two really slow things down, whereas bikes, scooters and walking mean you see more of the city. It’s a bit reclaim the streets and reminds me of the Walklines we designed years ago. The Covid situation, terrible as it is, has shown us a less congested London –an increase in the use of bikes and walking, a city moving in a much healthier way. For me, that’s much more beautiful.”

For more on these designs, and a prototype Hyperloop passenger capsule, visit priestmangoode.com.

Autoura’s Bainbridge says China has won the self-driving engineering race and Level4 is near-term in the UK.

UK urged to concede the self-driving engineering race and focus on the business opportunity

Our Zenzic CAM Creator series continues with the CEO of Autoura, Alex Bainbridge.

Since selling online reservation service TourCMS in 2015, tourism entrepreneur Alex Bainbridge has been working on his next industry gamechanger: Sahra the sightseeing robot – a digital assistant, concierge and tour guide. Sahra is already available as an app for tourists on foot, but combine her with a driverless car and you get an AI holiday rep and your own personal tour bus in one, all completely human-free. Bringing a different perspective to our other Zenzic CAM Creators, the affable Bainbridge has words of wisdom and some brutal home truths for the UK self-driving industry.

AB: “Over the last 20 years we’ve seen web, mobile and social dramatically change the sightseeing industry. These inventions were forced upon us and we’ve had to grapple with them. Self-driving is next and governments around the world are rushing to legalise it. A lot of the focus here is still on engineering, but China has already won that race. The faster we all accept that, the sooner we as a nation can shift to winning the commercialisation race. We’re driven by the money-making opportunity.

Sightseeing Autonomous Hospitality Robot by Autoura – Sahra

“50% of sightseeing is by vehicle and these new automated forms of transport will bring change, whether it’s an e-scooter for a city tour, or a self-driving car for a vineyard visit or road trip. I’m interested in the pure leisure uses and the customer experience, not deliveries or getting from A to B. We’ve built a digital platform that can work on any robo-taxi. Google, Apple, Amazon and Baidu will all run self-driving fleets, and they’re going to have to compete with Uber and Lyft. We want the customer experience layer.

“Most urban vehicle-based sightseeing is currently done by hop-on hop-off buses, but major cities are beginning to ban them – either directly, by closing roads, or indirectly, by not allowing them to park. The transition to autonomous will start with CAVs running routes like buses. This means we can get trading from Level4, and we only need a few vehicles to start. We’re a step away from the hardware but look at Waymo in Phoenix and Cruise in San Francisco – this is near-term and we’re going to see some big changes in the second half of 2021.”

For further info on Autoura’s “in-destination travel experiences”, see autoura.com.

Prof Nick Reed on how automated vehicles can bring safer, more sustainable transport and a better society for all.

Safety, air quality and accessibility: Professor predicts how driverless cars will change UK

Our Zenzic CAM Creator series continues with the founder of Reed Mobility, Professor Nick Reed.

Specialising in psychology and road safety, Professor Nick Reed is one of the UK’s leading experts on connected and automated vehicles (CAVs). His company, Reed Mobility, helps organisations and businesses in their understanding of risk and the effectiveness of mitigations for infrastructure, vehicles, drivers and road users.

What major changes do you expect in UK transport over the next 10-15 years? 

I hope we’ve moved beyond the high point of hype and will start to see the commercial deployment of automated vehicles, delivering positive impacts on safety, air quality and accessibility to transport – all the radical transformations the AV industry has been promising. Over the last few weeks, with announcements from the likes of Waymo and Cruise, there are signs this might be happening.

The issue of air quality isn’t going away. We need to accelerate decarbonisation and encourage active transport. I hear people say we need to start designing cities around people rather than cars, but I don’t think that’s quite right. We have always designed cities around people, but for a long time we’ve seen cars as the best solution for moving people – now we understand that alternatives are required to achieve sustainable mobility in urban centres. Data will be critical in changing that thinking, in understanding mobility in cities and rural areas – helping us to understand who needs to travel, how best to serve those needs, and the social, environmental, safety and economic impacts of meeting that demand.

Can you expand on the likely development of self-driving vehicles within this timeframe e.g. freight platooning, robotaxis and privately owned driverless cars?

We have converging strands of automation. The likes of Waymo and limited operational design domain (ODD), the car doing everything in restricted circumstances, and then the manufacturers of traditional privately-owned cars, including Tesla, introducing more ADAS features and increasing the level of automation.

That convergence, where automated cars can do everything everywhere, is a long way off, but over time the boundaries of the ODDs in which vehicles are capable of operating in an automated mode will expand, encompassing more roads, more traffic situations and more weather conditions.

Automation in which control shifts from human drivers to vehicle systems present a challenge and, again, data may play a critical role in resolving this issue. To have this functionality, drivers may have to accept much greater driver monitoring than is typical in cars today. There’s also the concern about how extended use of automation over time may potentially result in deskilling the driver. Cars may decide that, based on their observations of driving behaviour, the driver is not sufficiently capable to have automation! The evidence on achieving safe sharing of responsibility for driving with automation systems is mixed, to say the least.

An additional route for road automation that has a lot of promise is for the movement of goods. With no passengers on board – and fewer concerns over vehicles operating at low speed or achieving passenger comfort – companies may be more willing to launch automated freight vehicles (like Nuro). This may open up new business models for delivery services that would be impossible with human driven deliveries.

With reference to your six key perspectives (safety, environment, prosperity, productivity, technology and joy) what benefits will these vehicles bring?

Safety – it’s about tackling human error as a contributory factor in road crashes. No one is claiming that automation will solve everything, but it may start to reduce the prevalence of common factors like excess speed, intoxication and fatigue.

Environment – it’s about the whole model of transportation. If we can shift to shared, on-demand vehicles, then maybe we need fewer of them. Also, active travel might feel safer if vehicles are more predictable.

Prosperity – mobility is a key factor in success for communities and individuals. AVs might help tackle issues of equality in transport provision.

Productivity – it’s about reclaiming time. If the AV is driving you can spend time doing other things, whether that’s being more productive for work or gaining a better life balance.

Technology – most people agree that technology has brought huge benefits, but we can do better, for example, in terms of poor air quality or the number of people dying in crashes. To achieve this, we need to break out of the transport model we’ve been using for 100 years – and we may need new technologies to help us do that.

Joy – our transport systems should be a source of happiness. Let’s create environments that are aesthetically attractive. If we want our children to play in the streets we need transport that’s compatible with that, not lorries thundering past.

What are the potential downsides in the shift to self-driving and how can these be mitigated?

Of course, there’s a utopian and dystopian version of a future with automated vehicles. People often raise the issue of unemployment for professional drivers but the widescale deployment of automated vehicles is going to have a long transition period. Automation might address a shortage of drivers in the freight sector and may also create new jobs in remote vehicle monitoring and fleet maintenance. Although the transition may be long, it is something we need to be thinking about now to ensure that it is a smooth process.

There’s also a challenge coming around how we see crashes from an ethical point of view. Unfortunately, 1.3 million people die on our roads globally every year, of which there’s about 1,800 in the UK. Automation may reduce that number significantly but we need to be prepared for the discussion about fatalities caused by the actions of machines rather than human drivers.

Another concern is that models of automated vehicle deployment could further embed personal car use into society, when active travel is more sustainable. Automated vehicles have the potential to change our mobility ecosystem radically – so it’s important that we have a clear vision about how that change can bring safer, more sustainable transport and a better society for all.

For further info, including more detail on the six key perspectives, visit reed-mobility.co.uk

Bold predictions about our driverless future by petrolhead Clem Robertson.

Meet the maverick radar expert of UK drones and driverless

Welcome to a new series of interviews with our fellow Zenzic CAM Creators. First up, Clem Robertson, CEO of R4dar Technologies.

As a keen cyclist who built his own Cosworth-powered Quantum sportscar from scratch, it’s no surprise that the founder of Cambridge-based R4dar takes a unique approach to self-driving. Indeed, his involvement can be traced directly to one shocking experience: driving down a local country lane one night, he had a near miss with a cyclist with no lights. He vividly remembers how a car came the other way, illuminating the fortunate rider in silhouette and enabling an emergency stop. It proved to be a light bulb moment.

R4dar urban scene tags
R4dar urban scene tags

What does R4dar bring to connected and automated mobility (CAM)? 

CR: “I’d been working in radar for five or six years, developing cutting edge radar for runways, when the incident with the cyclist got me thinking: Why could my cruise control radar not tell me something was there and, importantly, what it was? This kind of technology has been around for years – in World War II we needed to tell the difference between a Spitfire and a Messerschmitt. They placed a signal on the planes which gave this basic information, but things can be much more sophisticated these days. Modern fighter pilots use five different methods of identification before engaging a potential bogey, because one or more methods might not work and you can’t leave it to chance whether to blow someone out of the sky. The autonomous vehicle world is doing similar with lidar, radar, digital mapping etc. Each has its shortcomings – GPS is no good in tunnels; the cost of 5G can be prohibitive and coverage is patchy; cameras aren’t much good over 100 metres or in the rain, lidar is susceptible to spoofing or misinterpretation; digital maps struggle with temporary road layouts – but together they create a more resilient system.”

How will your solutions improve the performance of self-driving cars?

CR: “Radar only communicates with itself, so it is cyber-resilient, and our digital tags can be used on smart infrastructure as well as vehicles – everything from platooning lorries to digital high vis jackets, traffic lights to digital bike reflectors. They can tell you three things: I am this, I am here and my status is this. For example, I’m a traffic light up ahead and I’m going to turn red in 20 seconds. Radar works in all weathers. It is reliable up to 250-300m and very good at measuring range and velocity, while the latest generation of radars are getting much better at differentiating between two things side-by-side. We are working with CAM partners looking to use radar in active travel, to improve safety and traffic management, as well as with fleet and bus operators. We are also working with the unmanned aerial vehicle (UAV) industry to create constellations of beacons that are centimetre-accurate, so that delivery drones can land in a designated spot in the garden and not on the dog!”

R4dar cyclists in fog
R4dar cyclists in fog

What major developments do you expect over the next 10-15 years?

CR: “Fully autonomous vehicles that don’t carry passengers will come first. There are already little robots on the streets of Milton Keynes and, especially with Covid, you will see a big focus on autonomous last mile delivery – both UAVs and unmanned ground vehicle (UGVs). You never know, we might see delivery bots enacting a modern version of the computer game Paperboy. More and more people in urban areas with only roadside parking will realise that electric cars are tricky to charge, unless you put the chargers in the road, which is expensive. If you only need a car one or two days a month, or even for just a couple of hours, there will be mobility as a service (MAAS) solutions for that. Why would you bother with car ownership? E-scooters are one to keep an eye on – once they’re regulated they will be a useful and independent means of getting around without exercising. Town centres will change extensively once MAAS and CAM take off. There will be improved safety for vulnerable road users, more pedestrianisation, and you might see segmented use at certain times of day.”

Do you see any downsides in the shift to self-driving?

CR: “Yes! I love driving, manual gearboxes, the smell of petrol, the theatre, but you can see already that motorsport, even F1, is becoming a dinosaur in its present form. People are resistant to change and autonomous systems prompt visions of Terminator, but it is happening and there will be consequences. Mechanics are going to have less work and will have to retrain because electric motors have less moving parts. Courier and haulage driving jobs will go. Warehouses will be increasingly automated. MAAS will mean less people owning their own cars and automotive manufacturers will have to adapt to selling less vehicles – it’s a massive cliff and it’s coming at them much faster than they thought – that’s why they’re all scrambling to become autonomous EV manufacturers, it’s a matter of survival.”

R4dar lights in fog
R4dar lights in fog

So, to sum up….

CR: “Fully autonomous, go-anywhere vehicles are presented as the utopia, but there’s a realisation that this is a difficult goal, or at least a first world problem. There might always be a market for manned vehicles in more remote locations. A lot of the companies in this industry specialise in data, edge processing and enhanced geospatial awareness, and that will bring all kinds of benefits. How often have you driven in fog unable to see 10m in front of you? Self-driving technology will address that and many other dangers.”

Hearing bold predictions like these from a petrolhead like Clem, suddenly Zenzic’s ambitious 10-year plan seems eminently achievable.

For further info, visit the R4dar website.

In an explosive exclusive interview with Cars of the Future, transport expert Christian Wolmar presents a devastating critique of the self-driving dream.

Are driverless cars the future? Don’t believe the hype says Wolmar

As an arch critic of the UK’s autonomous vehicle plans, transport commentator Christian Wolmar sums up his views in the title of his book, Driverless Cars: On a Road to Nowhere.

“The problems are almost too great to list, but my primary concerns are two-fold: technological and environmental,” he says. “There are huge worries about rushing into it, cutting corners which might result in accidents and deaths, as they already have.

“Then there’s a bigger issue: what is the positive outcome? I just don’t see it. People are not asking for it, it doesn’t solve problems such as congestion or pollution, yet huge amounts of money are going into it with almost no return.

“The technology can be hacked. There’s the risk of deskilling drivers with the adoption of more automated driving aids, then expecting them to take over in the event of an emergency. The more you look at the driverless vision, the more dystopian it appears.”

At this point, Wolmar casually mentions a host of other potential pitfalls concerning legality,